Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/33231
DC FieldValueLanguage
dc.contributor.authorPapanikolaou, Michael G.-
dc.contributor.authorHadjithoma, Sofia-
dc.contributor.authorKeramidas, Odysseas-
dc.contributor.authorDrouza, Chryssoula-
dc.contributor.authorAmoiridis, Angelos-
dc.contributor.authorThemistokleous, Alexandros-
dc.contributor.authorHayes, Sofia C.-
dc.contributor.authorMiras, Haralampos N.-
dc.contributor.authorLianos, Panagiotis-
dc.contributor.authorTsipis, Athanassios C.-
dc.contributor.authorKabanos, Themistoklis A.-
dc.contributor.authorKeramidas, Anastasios D.-
dc.date.accessioned2024-11-29T10:41:26Z-
dc.date.available2024-11-29T10:41:26Z-
dc.date.issued2024-02-05-
dc.identifier.citationInorganic chemistry, 2024, vol. 63, no. 7en_US
dc.identifier.issn00201669-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/33231-
dc.description.abstractThe two-electron reductive activation of O2 to O22- is of particular interest to the scientific community mainly due to the use of peroxides as green oxidants and in powerful fuel cells. Despite of the great importance of vanadium(IV) species to activate the two-electron reductive activation of O2, the mechanism is still unclear. Reaction of VIVO2+ species with the tridentate-planar N,N,N-carboxamide (ΗL) ligands in solution (CH3OH:H2O) under atmospheric O2, at room temperature, resulted in the quick formation of [VV(═O)(η2-O2)(κ3-L)(H2O)] and cis-[VV(═O)2(κ3-L)] compounds. Oxidation of the VIVO2+ complexes with the sterically hindered tridentate-planar N,N,N-carboxamide ligands by atmospheric O2 gave only cis-[VV(═O)2(κ3-L)] compounds. The mechanism of formation of [VV(═O)(η2-O2)(κ3-L)(H2O)] (I) and cis-[VV(═O)2(κ3-L)] (II) complexes vs time, from the interaction of [VIV(═O)(κ3-L)(Η2Ο)2]+ with atmospheric O2, was investigated with 51V, 1H NMR, UV-vis, cw-X-band EPR, and 18O2 labeling IR and resonance Raman spectroscopies revealing the formation of a stable intermediate (Id). EPR, MS, and theoretical calculations of the mechanism of the formation of I and II revealed a pathway, through a binuclear [VIV(═O)(κ3-L)(H2O)(η1,η1-O2)VIV(═O)(κ3-L)(H2O)]2+ intermediate. The results from cw-EPR, 1H NMR spectroscopies, cyclic voltammetry, and the reactivity of the complexes [VIV(═O)(κ3-L)(Η2Ο)2]+ toward O2 reduction fit better to an intermediate with a binuclear nature. Dynamic experiments in combination with computational calculations were undertaken to fully elucidate the mechanism of the O2 reduction to O22- by [VIV(═O)(κ3-L)(Η2Ο)2]+. The galvanic cell {Zn|VIII,VII||Id, [VIVO(κ3-L)(H2O)2]+|O2|C(s)} was manufactured, demonstrating the important applicability of this new chemistry to Zn|H2O2 fuel cells technology generating H2O2 in situ from the atmospheric O2.en_US
dc.description.sponsorshipResearch Promotion Foundation of Cyprusen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInorganic Chemistryen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNuclear magnetic resonance spectroscopyen_US
dc.subjectElectron spin resonance spectroscopyen_US
dc.subjectCyclic voltammetryen_US
dc.subjectFuel cellsen_US
dc.subjectLigandsen_US
dc.subjectNuclear magnetic resonanceen_US
dc.subjectVanadium compoundsen_US
dc.subjectReaction intermediatesen_US
dc.subjectParamagnetic resonanceen_US
dc.subjectOxidationen_US
dc.titleExperimental and Theoretical Investigation of the Mechanism of the Reduction of O2 from Air to O22- by VIVO2+-N,N,N-Amidate Compounds and Their Potential Use in Fuel Cellsen_US
dc.typeArticleen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Glasgowen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1021/acs.inorgchem.3c03272en_US
dc.identifier.pmid38317481-
dc.identifier.scopus2-s2.0-85184797468-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85184797468-
dc.relation.issue7en_US
dc.relation.volume63en_US
cut.common.academicyear2024-2025en_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1520-510X-
crisitem.journal.publisherAmerican Chemical Society-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-2630-4323-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s)

35
Last Week
3
Last month
checked on Dec 22, 2024

Download(s)

7
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons