Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/33096
DC FieldValueLanguage
dc.contributor.authorAlmpanis, Ioannis-
dc.contributor.authorAntoniou, Marina-
dc.contributor.authorEvans, Paul-
dc.contributor.authorEmpringham, Lee-
dc.contributor.authorGammon, Peter-
dc.contributor.authorUndrea, Florin-
dc.contributor.authorMawby, Philip-
dc.contributor.authorLophitis, Neophytos-
dc.date.accessioned2024-10-15T06:59:45Z-
dc.date.available2024-10-15T06:59:45Z-
dc.date.issued2024-01-13-
dc.identifier.citationIEEE Transactions on Industry Applications, 2024, vol. 60, iss. 3, pp. 4251 - 4263en_US
dc.identifier.issn00939994-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/33096-
dc.description.abstractIn recent years, silicon carbide (SiC) based devices are increasingly replacing their silicon counterparts in power conversion applications due to their performance superiority. SiC insulated-gate bipolar transistors are particularly interesting as they appear to be the most appropriate for medium and high voltage applications due to their low on-state voltage drop for devices rated at 10kV or higher. However, the widespread adoption of SiC IGBT requires rugged devices capable of surviving in harsh conditions. By using Sentaurus TCAD and validated models based on published experimental results, the short-circuit, unintentional turn-on and dV/dt ruggedness of SiC IGBTs are comprehensively explored and the impact of device parameters on the overall IGBT ruggedness were identified. This paper aims to propose the most efficient methods for IGBT ruggedness enhancement on the device level.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Industry Applicationsen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdV/dten_US
dc.subjectinsulated-gate bipolar transistor (IGBT)en_US
dc.subjectruggednessen_US
dc.subjectshort circuiten_US
dc.subjectsilicon carbide (SiC)en_US
dc.subjectTCAD simulationen_US
dc.subjectunintentional turn-onen_US
dc.titleSilicon Carbide n-IGBTs: Structure Optimization for Ruggedness Enhancementen_US
dc.typeArticleen_US
dc.collaborationUniversity of Nottinghamen_US
dc.collaborationUniversity of Warwicken_US
dc.collaborationUniversity of Cambridgeen_US
dc.journalsOpen Accessen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TIA.2024.3354870en_US
dc.identifier.scopus2-s2.0-85182948867-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85182948867-
dc.relation.issue3en_US
dc.relation.volume60en_US
cut.common.academicyear2024-2025en_US
dc.identifier.spage4251en_US
dc.identifier.epage4263en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-0901-0876-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s)

44
Last Week
2
Last month
28
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons