Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/33072
Title: The Be-Hive Project—Counting Bee Traffic Based on Deep Learning and Pose Estimation
Authors: Padubidri, Chirag 
Kamilaris, Andreas 
Charalambous, Alexis 
Lanitis, Andreas 
Constantinides, Marios 
Major Field of Science: Natural Sciences
Field Category: NATURAL SCIENCES
Keywords: Smart beehive;Bees’ traffic counting;Deep learning;IoT;
Issue Date: 9-Apr-2024
Source: Intelligent Systems and Applications (IntelliSys 2023), 2024
Abstract: Beekeeping is an important practice for ensuring the abundance of pollinators and for honey production. Traditionally, beekeepers inspect hives regularly to monitor their bees’ populations, but this method is invasive and can cause stress to the bees. It is also impractical, for beekeepers having hundreds or thousands of beehives. In recent decades, various attempts have been made to automate the monitoring of bee colonies using emerging technologies. These technologies include sensors that collect micro-climate parameters, photos, video and audio from inside the hives and the nearby environment, which are then analyzed using automatic or manual methods. The beehive project aims a range of sensing technologies (image, sound, temperature, humidity, weight), together with state-of-the-art computer vision technologies and remote-sensing imagery to create a smart beehive system and monitor beehive on real-time. In this paper, we present the preliminary results of the BE-HIVE, a smart beehive monitoring system. We present the monitoring system developed and the deep learning algorithm used to count bee traffic using the image from the camera placed at the entrance of the hive. For bee traffic estimation, we employ a counting algorithm that predicts the pose of individual bees and tracks them in subsequent frames. To reduce the annotation overhead of the key-points for pose estimation, we generate synthetic data to train our algorithm. The results show that the key-point detection model achieves an Intersection Over Union (IOU) of 86% when trained only on synthetic data and a traffic count mean absolute error of 5.7. These results indicate that the proposed approach can be used to monitor the bee activity remotely, increasing convenience and productivity.
URI: https://hdl.handle.net/20.500.14279/33072
ISSN: 9783031477232
DOI: 10.1007/978-3-031-47724-9_35
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Book Chapter
Affiliation : Cyprus University of Technology 
University of Twente 
CYENS - Centre of Excellence 
Funding: Deputy Ministry of Research, Innovation and Digital Policy Horizon 2020
Publication Type: Peer Reviewed
Appears in Collections:Κεφάλαια βιβλίων/Book chapters

Files in This Item:
File Description SizeFormat
978-3-031-47724-9_35.pdf8.57 MBAdobe PDFView/Open
CORE Recommender
Show full item record

Page view(s)

63
Last Week
12
Last month
checked on Nov 21, 2024

Download(s)

20
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons