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Abstract. Beekeeping is an important practice for ensuring the abun-
dance of pollinators and for honey production. Traditionally, beekeep-
ers inspect hives regularly to monitor their bees’ populations, but this
method is invasive and can cause stress to the bees. It is also impracti-
cal, for beekeepers having hundreds or thousands of beehives. In recent
decades, various attempts have been made to automate the monitoring of
bee colonies using emerging technologies. These technologies include sen-
sors that collect micro-climate parameters, photos, video and audio from
inside the hives and the nearby environment, which are then analyzed
using automatic or manual methods. The beehive project aims a range
of sensing technologies (image, sound, temperature, humidity, weight),
together with state-of-the-art computer vision technologies and remote-
sensing imagery to create a smart beehive system and monitor beehive
on real-time. In this paper, we present the preliminary results of the BE-
HIVE, a smart beehive monitoring system. We present the monitoring
system developed and the deep learning algorithm used to count bee traf-
fic using the image from the camera placed at the entrance of the hive.
For bee traffic estimation, we employ a counting algorithm that predicts
the pose of individual bees and tracks them in subsequent frames. To
reduce the annotation overhead of the key-points for pose estimation, we
generate synthetic data to train our algorithm. The results show that the
key-point detection model achieves an Intersection Over Union (IOU) of
86% when trained only on synthetic data and a traffic count mean abso-
lute error of 5.7. These results indicate that the proposed approach can
be used to monitor the bee activity remotely, increasing convenience and
productivity.

Keywords: Smart beehive · IoT · Deep learning · Bees’ traffic
counting

1 Introduction

Honey bees and pollinators in general constitute a key component of our planet’s
ecosystem and an essential actor in the global food production. With their polli-
nation services, bees facilitate the growth of more than one-third of the world’s
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crops, which is crucial for the agricultural industry [15] and for feeding the
human population and animals. In the United States alone [8], honey bees are
estimated between 21.22 and 54.75 billion. However, the population of honey
bees has experienced a drastic decline in recent years, primarily due to Colony
Collapse Disorder (CCD) [19], as well as factors like climate change, pesticides,
and diseases [17]. This decline in honey bee populations has a significant impact
on global food security and ecosystem stability. Monitoring honey bee popu-
lations is essential to understand their health and well-being, which is critical
for preventing colonies’ collapse. Traditionally, beekeepers visually inspect their
hives to assess the bees’ health, manually looking around the hive for potential
threats. However, this method is time-consuming, inefficient, impractical and
stressful for the bees.

Recent advances in technology have led to the development of automated
beehive monitoring systems that use cameras, microphones, and other sensors
to monitor and analyze hive health remotely [4,21]. By enabling beekeepers
to remotely evaluate the health of their hives, these systems can monitor the
honey bee populations with less manual effort, reducing the stress on bees. Other
important factors that determine the health of bee populations include weather
conditions, micro-climate near the colony, plant species in the surrounding envi-
ronment and the timing of their flowering [7,11]. Correlating the behavior of bees
with these external factors can provide a better understanding of how the ambi-
ent environment affects the overall health of the bee colony. This knowledge can
help beekeepers make informed decisions about the placement of their hives, pre-
dict their productivity in honey and ensure that bees are operating in a healthy
environment. Remote sensing and aerial imagery are essential tools that can aid
in collecting data on external factors such as weather, land cover and nearby
vegetation. Via such a multi-modal sensing approach, valuable insights about
the complex relationship between bees and their environment can be derived,
leading to the development of smarter decisions to ensure productivity of each
colony at local scale, as well as effective conservation strategies to protect bee
populations at large scale.

The Be-Hive project aims to develop a multi-modal sensing system, which
uses multiple sensors to collect a range of different types of data, employing var-
ious AI-based techniques to analyze and observe the bee colony’s health in real-
time. The proposed system constitutes a low-cost, DIY solution, which allows
beekeepers to understand the well-being of their bee colonies, be notified about
the current internal and external threats to the colony in real-time, and reduce
human labour by facilitating remote observations and analytic. This paper pro-
vides an overview of the Be-Hive system, covering hardware and software com-
ponents of the proposed smart beehive. The key features of the system are pre-
sented, explaining how these features work together to offer a complete solution
for monitoring bees’ activity. In the second part, we present the results of the
bee traffic estimation based on bee pose estimation using the images captured
by the smart beehive system.

The main contributions of this paper are listed below:
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– A system design which is based on various interviews with actual beekeepers
in the East Mediterranean region, recording their needs and requirements,
translated into hardware and software design;

– A novel approach to bees’ key-point detection based on the use of synthetic
data during training to minimize the annotation overhead for training a deep
learning (DL) algorithm. This approach significantly reduces the time and
effort required for manual annotation, while still achieving high levels of
accuracy for bees’ pose estimation, which can be used for bees’ tracking and
counting;

– A tracking algorithm based on the Hungarian algorithm [10], which allows
for efficient and accurate tracking bee key-points.

2 Related Work

Related work is divided in two parts: smart beehive systems based on emerging
sensing technologies and bees’ traffic monitoring algorithms using images and/or
video as input.

2.1 Smart Beehive Systems

The use of technology to collect data that may be harnessed to investigate the
behavior and health of bee hives has taken many forms over the years. Earlier
studies in the field depended on manually-written records to gather data, which
is time-consuming and error-prone. The human labour required restricts the
ability to scale to many hives and to monitor beehives at scale. The concept of
using emerging sensory technology and concepts of the Internet of Things (IoT)
for monitoring bee colonies has gained popularity due to its non-invasive nature,
increased automation and ability to provide data and create alerts in real-time.
Numerous studies have been conducted utilizing automatic sensors to collect and
analyze visual [2,4], audio [14,21] and other sensory data [9,18] to get important
insights about bees, such as how individual bees behave, how many bees enter
and exit the hive (in- and out-fluxes), or how the hive is performing overall in
terms of productivity of honey, well-being of its bees, especially of the queen. In
addition to the audio and video data, auxiliary data like temperature, humid-
ity, and weight could give more insights. Previous work has demonstrated that
monitoring the activity of bees around the hive’s entrance, such as counting the
number of bees entering and leaving the hive or watching for signs of swarming
behaviour, provides valuable data on the hives’ health and growth status.

In regards to sound recordings, the noise made by bees denote certain aspects
of their status. Analysis of the sounds made by honey bees is an area of research
that has seen significant progress, since it can help identify the various stressors
for honeybee colonies. Microphones or accelerometers placed inside or outside a
hive can be used to collect the sound generated by the bees. For example, Frings
and Little [5] observed that bees react to different sounds. A certain sound at a
particular frequency and amplitude causes the whole hive to come to a halt of
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its operations (i.e., freeze). Wenner [20] used a spectrograph and a microphone
placed inside the colony to perform one of the first spectral analyses on the honey
bees sound.

2.2 Bees’ Traffic Monitoring

Research using video to track and analyze honey bees’ behaviour is mostly lim-
ited to the past two decades, as video recording devices and storage systems
became available at the market at rational prices. Some attempts aimed to
track bees inside the hive using a marker placed on each individual bee [1,6].
These techniques are effective for tracking individual bees, but they require the
manual labeling of each bee, which is an invasive technique that needs consider-
able human effort. Other manual and semi-automatic techniques use the camera
placed at the entrance of the beehive to count the bee traffic [13,23]. In [13],
background subtraction and ellipse approximation techniques are combined to
segment and track individual bees at the hive’s entrance.

More recent techniques based on pose estimation employ deep learning to
detect the bees’ pose based on image data. In [16], Rodriguez et al. used a VGG
model to detect six key-points of a bee (tail, abdomen, head, and tentacles) and
estimate the bee’s pose. Castro et al. [4] demonstrate an experimental setup
involving inexpensive color charge-coupled device cameras, mounted in water-
proof boxes, along with a battery power source. These cameras are placed in
an orchard, positioned to capture video of bees visiting flowers when blooming.
Videos are captured at a resolution of 320 × 240 pixels at 24 frames per second
(FPS), with one minute of video captured at ten minute intervals. As the authors
note, their results are limited by the quality of the video, as well as the battery
power source, which prevent them from capturing more frequent recordings.
Despite the challenges, image-based techniques have the potential to provide
valuable insights into honey bees’ behaviour analysis and could ultimately lead
to improved hive management and conservation efforts. Future research in this
area could focus on developing more advanced deep learning based techniques
for tracking and analyzing honey bee behaviour using video/image data.

In relation to related work, our system differs in that it integrates audio, cam-
era, and sensor data to provide a more comprehensive view of bee hive activity.
This multi-modal approach enables us to capture and analyze a wider range of
data, including visual cues such as bee traffic and movement patterns, audio
cues such as the sounds made by the bees, and auxiliary data such as tem-
perature, humidity, and weight. By combining these different data streams, our
system can provide a more accurate and holistic picture of the hive’s health and
behavior than the system discussed above. Additionally, the proposed system
utilizes a deep learning approach for pose estimation to track individual bees in
video data. Specifically, we use key-point detection to estimate the positions of
critical body parts such as the head, abdomen, and tail. This approach has sev-
eral advantages over other image-based techniques, including the ability to track
individual bees even when they are partially occluded by other bees or objects
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in the frame. This can provide more accurate data on individual bee behavior
and interactions, which can ultimately lead to improved hive management.

3 Methodology

3.1 Requirements for BE-HIVE System

Bees are the primary pollinators of local flora, so it is critical to preserve the
bee population (and its diversity) healthy and safe across the world. Based on
various interviews with local beekeepers, the major problems which bee colonies
face in East Mediterranean region include the following:

1. Parasites e.g. the Varroa Destructor and Apocephalus Borealis parasite);
2. Pesticides i.e. chemical fertilizers sprayed on plants, which are lethal to bees;
3. Land use change which is responsible for reducing the bees’ food sources (i.e.

plants, flowers), reducing the potential space for settling their base (colony);
and

4. Competition with other bee colonies, wild bees and wasps.

According to Zacepins et al. [22], it is crucial to effectively identify and mea-
sure potential threats to bee colonies using indicators such as the swarming/pre-
swarming state, extreme nectar flow, queenless state, broodless state, declining
colony, and starving at early stage is very important to smartly manage the bee
colonies. Some behavioural cues of the bees are indicator of abnormal behaviour,
anomaly and threats. Such cues can be derived from observations such as bees’
flying out at different time of the day and different duration, covering varied fly-
ing distances, flying out uncoordinated in different directions each time, walking
in circles on the ground, etc. Abnormality can be derived from noise inside the
hive (captured by the audio sensors), bee traffic at the entrance (captured by
cameras and computer vision), direction in which they fly and distance traveled
(captured by camera traps strategically located near significant sources of food
identified using drones).

Considering the above, an important requirement of the BE-HIVE system
is to become an end-to-end monitoring ecosystem which can record and charac-
terize behavioural cues from the bee colony using multi-modal data, allowing to
derive anomalies or abnormal behaviour. The system will work in a non-intrusive
way, to avoid stressing the bees and to increase the convenience for beekeepers.

To achieve the above, the proposed BE-HIVE system needs to include:

– A camera installed at the entrance of the hive to capture the bees entering
and exiting;

– An audio microphone placed inside the hive to capture the bees’ buzz/noise;
– Temperature, humidity and weight sensors placed inside the hive to measure

the hive’s micro-climate and mass of the honey produced;
– A land cover map of plants/flowers in the surrounding environment;
– Auxiliary camera traps, placed near flowering plants to identify bees’ visiting

sites, distance traveled and visit time during the day. Positioning of the traps
will be based on the land cover map.
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Fig. 1. Smart bee hive monitoring system overview. The system consist of a camera,
microphone, humidity sensor, temperature sensor, and weight sensor (b). Image from
actual site (a)

3.2 Design of BE-HIVE System

Hardware The first step in creating a reliable hive monitoring system is to
develop the system for gathering high-quality data. This system is unavoidably
exposed to elements that can harm most electronics, such as rain, sunshine,
wind, cold, bee attacks, and disturbances. Additionally, the interior components
must be positioned in a way that prevents bees from covering them in propolis
or wax [18].

The structure of the system was developed through digital fabrication, con-
sidering guidelines provided by local beekeepers. A 3D model of the entire struc-
ture was designed using Rhinoceros 6 software, which allowed to identify issues
that could hinder both the user experience and the device’s performance.

Figure 1 illustrates the design and development of the BE-HIVE system,
using Raspberry Pi (RP) as the basis to connect the sensory equipment used.
The current version of the BE-HIVE system consists of:

1. A camera placed at the entrance of the bee hive, capturing the bees flying
in and out. The camera can capture images at a maximum resolution of
3280 × 2464 pixels;

2. A USB microphone (35 Hz–18 kHz);
3. Temperature, humidity and weight sensors, all of which are connected through

the built-in 40-pin GPIO of the RP. Due to harsh weather conditions, namely
intense sun irradiation and high ambient air temperature, the sensor package
was installed in the middle of the beehive.

Software A multi-process Python-based data collection system (DCS) was
developed. The system consists of multiple processes, i.e. the controller, the cam-
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era handler, the microphone handler and the sensor handler. Each sensor is con-
trolled based on a separate process. Additionally, the DCS system was designed
to automatically execute the code on boot time, making it user-friendly when
deployed in the field and easily handled by beekeepers. This enables users to
simply connect the system to the electricity network and then DCS automati-
cally initiates. The open-source DCS system created for the BE-HIVE system is
available to the public and can be found on Github.1

3.3 Bees’ Traffic Counting

Data Preparation Image data was collected using a camera installed at the
entrance of the beehive. The images were captured at a rate of 3–6 frames per
second with a resolution of 640 × 480. For this experiment, approximately 4,000
images were collected over the course of three consecutive days. Figure 2a shows
a raw image captured by the system’s camera. To reduce unneeded info, we
carefully selected a region of interest and used a mask to remove the irrelevant
areas. Then, to standardize the image size and make them more computationally
efficient, we resized the images to a uniform size of 256 × 256 (Fig. 2b).

Fig. 2. Image data collected from the BE-HIVE camera and synthetic data generated. a
Raw image collected from the camera installed at the entrance of the beehive, 640×480.
b The region selected, resized to 256 × 256. c A sample of a background image used
to generate synthetic data. d Samples of cropped images showing honey bees with
different sizes, poses and lighting conditions. e Synthetically generated images using
the background image (c) and bees’ real images (d)

To train the key-point detection model, we annotated the key-points of indi-
vidual bees, i.e. the head, abdomen, and tail. However, annotating pixel-level
1 https://github.com/superworld-cyens/BE-HIVE.

https://github.com/superworld-cyens/BE-HIVE
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key-points for a large dataset can be tedious and time-consuming. To overcome
this challenge, we adopted a synthetic data approach to generate artificial data
about bees.

To do this, we first cropped 287 individual bees (Fig. 2c) and 165 back-
ground images (Fig. 2d) from our original dataset, compassing a wide range
of poses, lighting conditions and sizes. Each bee was manually annotated with
its corresponding key-points. We then developed a Python-based synthetic data
generator which takes an empty background image and populates it with a ran-
dom number of bees at various locations. We set the number of bees in each
image to be between 2 and 16 to simulate a range of realistic scenarios, based on
our observations at the experimental bee hive. Figure 2b shows an example of
a synthetically generated bee image, illustrating the diversity of poses and loca-
tions captured via this approach. In total, 1646 synthetic images were generated
for training and validation (Fig. 2e).

Key-Point Detection and Pose Estimation An end-to-end key-point detec-
tion model (see Fig. 3), inspired by FPN [12], was used to predict the bees’
key-points. We employed a methodology similar to the one proposed by Open-
Pose [3] for human pose estimation using a key-point confidence map and part
affinity field. In our implementation, instead of a part affinity field, we pre-
dict part affinity confidence masks, which encode the line connecting the head,
abdomen and tail parts of the bee. The key-point detection model takes a color
image of size 256×256×3 as input and produces an output map (256×256×4)
of 2D locations of anatomical key-points (head, abdomen, and tail) for each bee
and a part affinity confidence mask. First, a feed-forward network predicts a
set of 2D confidence masks S of each body part location and a 2D part affinity
confidence mask C, which encodes the connection between the key-points. The
set S = (S1, S2, . . . , Sj) has J = 3 confidence masks, Sj ∈ R

w×h.
During inference, the key-point confidence masks and the part affinity con-

fidence mask are parsed by greedy inference to connect the head, abdomen and
tail key-points, associating them with each bee [3]. This is done by computing the
line integral over the corresponding part locations. In other words, we measure
the alignment of the predicted part affinity confidence mask with the possible
connection formed by connecting the detected key-points. For example, for two
candidate part locations dhead and dtail, we sample the predicted part affinity
confidence mask, C, along the line segment to measure the confidence in their
association.

The equation that measures the confidence is given by:

E =

u=0∫

u=1

C(p(u)) · dhead − dtail

|dhead − dtail|2 du

Here, p(u) interpolates the position of the two body parts dhead and dtail,
p(u) = (1−u)dhead+udtail. In practice, we approximate the integral by sampling
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Fig. 3. Block diagram: the proposed key-point detection model and tracking algorithm.
Given an RGB image, we feed it into our DL architecture to produce a key-point
confidence mask (One mask per key point) and a part affinity confidence mask. The
part-affinity confidence mask is used to associate the head, abdomen and tail key-points
to individual bees. Finally the key-points are tracked using tracker algorithm

and summing uniformly spaced values of u.

Key-Point Tracking Once the key-point is detected and each key-point is asso-
ciated with its corresponding body part, the next step is to track the individual
bees in the consecutive frames and count the in-flux and out-flux of the bees. For
simplicity, we considered only the head and tail key-points for tracking. Instead
of tracking two points, we calculated the midpoint of the line joining the key-
points and the angle of orientation of the line (here, we consider the x-axis as
the zero-degree line). Thus, each bee is associated with a midpoint location and
an angle of orientation in each frame.

The proposed multi-object tracker proposed utilizes the Hungarian algo-
rithm [10] to associate detections of bees across consecutive frames. When a
new frame is processed, the algorithm calculates the Euclidean distance between
midpoints and cosine similarity score for the angle of orientation of the detected
bees in the current and previous frames. Using the Hungarian algorithm, it then
assigns the most likely detected bee in the current frame to the bee in the pre-
vious frame, forming a “track” of the bee’s trajectory across the frames. The
assignment is determined by the lowest cost for both distance and angle. In this
context, a “track” refers to the trajectory of a single bee object in consecutive
frames, represented by a series of detections associated over time. If the cost
between a track and detection is greater than a threshold distance and thresh-
old angle, the track is marked as lost. If a track has been lost for too many
frames, it is deleted. The threshold distance and angle are determined by the
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bee’s velocity and camera FPS.

Average bee movement (in Pixel) =
beedisp

(Wactual/Wpixel)
× beedisp

(Hactual/Hpixel)

= 25 × 25

Average angle of rotation (in Pixel) = cos−1

(
bee2len − bee2disp

2 ∗ bee2len

)

= 60◦

where beedisp is the average walking speed per frame, which is 30 mm/6, i.e.,
5 mm/frame, Wactual × Hactual represents the actual dimensions of the walking
board (Fig. 2b), which are 140×100 mm. Wpixel×Hpixel is the image resolution,
which is 640 × 480 pixels, and beelen is the average bee length, which is 15 mm.
Based on our calculations and adding a slight buffer, we have set the threshold
distance at 35 pixels, and the threshold angle at ±45◦.

The tracker maintains a list of tracks, where each track represents the move-
ment of an individual bee over time. The track contains the current location of
the bee as well as its past locations. When a track cannot be achieved, it means
that the bee has left the frame of the camera. If the track ends at the top of the
walking board, it means that the bee has left the area being monitored and has
flown out. In this case, the out-flux count is incremented, indicating that one
more bee has flown out. On the other hand, if the track ends at the bottom of
the walking board, it means that the bee has entered the monitored area from
outside. In this case, the in-flux count is incremented, indicating that one more
bee has entered the area being monitored. Overall, the tracker keeps track of the
movements of bees and uses this information to determine the number of bees
entering and leaving the monitored area. The key-point detection model, and
tracking algorithm is available here.2

4 Results and Discussion

Key-Point Detection and Pose Estimation: The key-point detection model
was exclusively trained on generated synthetic data, utilizing the Adam opti-
mizer for 1000 epochs. The model exhibited impressive performance, achieving
an IoU of 97% and an F1-score of 98% during training. To evaluate its real-world
effectiveness, the trained model was tested on 75 manually annotated images,
each containing an average of 6 bees. The test images yielded an IoU of 86.2%
and an F1-score of 88%, which represents a slight decrease from the training
results.

The observed decline in algorithm performance can be attributed to several
factors. Firstly, the changing lighting conditions during the day resulted in over-
exposed images in the afternoon, as evident from the visual depiction in Fig.
4. This issue could be addressed by covering the hive entrance with a dark film
2 https://github.com/superworld-cyens/BE-HIVE/tree/main/BEE ANALYSIS.

https://github.com/superworld-cyens/BE-HIVE/tree/main/BEE_ANALYSIS
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Fig. 4. The sample output from the Keypoint detection model is shown in the figure,
with the input image on the left and the predicted keypoints on the right. The Image
(a) show few examples that the predicted key-points matches with actual bee location,
Image (b) are few examples where key-point detection model performance decrease
due to over-exposure of light

to limit the exposure of sunlight, which will be explored in future works. Sec-
ondly, the model encountered difficulties in accurately predicting the position
of bees when only one key-point was visible in the frame. This was primarily
due to the structural similarities of bees on both sides, leading to the model’s
confusion between the head and tail positions. However, this problem was mit-
igated when at least two points (head-abdomen, tail-abdomen) were visible in
the frame, resulting in improved model accuracy. Further research could focus
on optimizing the identification and tracking of bees in such scenarios, thereby
enhancing the overall performance of the algorithm.

Key-Points Tracking The tracking algorithm relies exclusively on the key-
point predictions generated by the detection model. To evaluate the performance
of the algorithm, we conducted experiments on five different video datasets cap-
tured at different times of the day. These datasets were manually analyzed, and
the total number of in-bee and out-bee events were recorded for each video. Each
dataset comprised an average of 150 frames, with an average of 20 bee tracks in
each frame.
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The key-point detection model was applied to each frame, and the detected
key-points were tracked using the developed tracker algorithm. The performance
of the algorithm was evaluated based on its ability to accurately track individual
bees and correctly measure their in-flux and out-flux. The results, as shown in
the Table 1, demonstrate that the algorithm achieved good accuracy in all 6 sets
of videos, with a mean absolute error of 5.7 for in-flux/out-flux measurement.
This could be used as bench mark for bee traffic counting using images. To test
the robustness of the proposed algorithm we ran the algorithm on 2 hours of
video capture between 9:30 AM and 03:50 PM. The results showed that there
were 6857 in-flux and 7165 out-flux. These results have not been verified due
to the unavailability of ground truth, but they were used to demonstrate the
robustness of the proposed model. Figure 5 shows a snapshot of the bee traffic
count for the analyzed video. The data was taken at the beginning of the foraging
season when the number of bees is slightly less than during peak foraging season.
It is expected that the traffic will increase in the coming months which will be
ideal time to test the algorithm on site. In the graph it is noted that the out-flux

Fig. 5. The graph shows the inflow and outflow of bee traffic between 9:30 AM and
03:50 PM on a typical day. The x-axis represents time, and the y-axis represents count.
The orange line shows the influx count, and the blue line shows the outflux count. Since
this is the start of the day, the bees tend to leave the beehive for foraging activities to
collect nectar and pollen. So the out-flux is slightly more then the in-flux
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Table 1. Tracking results

Video Actual value (In
count)

Actual value
(Out count)

Predicted
value (In
count)

Predicted
value (Out
count)

Average
MAE

Video 1 21 23 27 29 6

Video 2

5 6 7 8

2

Video 3
7 4 7 5

0.5

Video 4 28 19 35 24

6

Video 5 12 11 18 18 6.5

Video 6 34 44 39 54 7.5

MAE: 5.7

is slightly higher then the in-flux, this is mainly because at this time of the day
the bees tends to leave their hive for forging activity to collect nectar and pollen.

The results of our analysis indicate that the proposed tracking algorithm
tended to overestimate bee counts due to the bees’ tendency to congregate near
the hive entrance and cross the walking board multiple times. The counter was
incremented every time a bee approached the entry and exit line, irrespective of
its actual direction of movement. To address this issue, we plan to incorporate
tracking IDs along with the trajectory in the next version of the algorithm. This
will allow for more precise identification and tracking of individual bees and
enable us to accurately differentiate between inbound and outbound movement,
leading to more accurate bee counts. We believe this enhancement will substan-
tially improve the algorithm’s effectiveness in accurately tracking bee activity
and provide more reliable data for monitoring hive behavior (Table 1).

5 Future Work

As a future research direction, we will deploy the proposed tracking algorithm on
beehives in real-time to evaluate its efficacy in practical settings. This will entail
testing the algorithm on annotated longer video captures from the beehive to
ensure its ability to handle extended tracking periods. As previously discussed,
the current counter utilizes the position of the trajectory to count the in/out-
flux. However, in the updated version, the counter will increment only when a bee
leaves the walking board, taking into account both the position of the trajectory
and the bee ID, resulting in more precise measurements of bee activity.

Furthermore, we aim to direct attention to other objectives of the Beehive
project, including audio data analysis, classification of behavior based on bee
trajectory, and detection of anomalies. To achieve this, we intend to develop a
dashboard for beekeepers and researchers to monitor the hive’s vitals, such as
temperature, humidity, and weight, and provide a live video feed from the hive
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entrance, as well as statistics on bee population. Moreover, the dashboard will
include a heat map of recent bee visits, enabling beekeepers to manage the hive
with minimal intrusion. Our future research directions will focus on enhancing
the proposed tracking algorithm’s accuracy and effectiveness and expanding the
Beehive project’s objectives to include a broader range of bee monitoring and
management capabilities.

6 Conclusion

The smart beehive system presented in this paper is an inexpensive, do-it-
yourself Raspberry Pi system that can be quickly deployed and can collect high-
quality data. The system offers various levels of calibration at both the hardware
and software levels, and is easy to expand and upgrade. The paper introduces
a novel approach to bee key-point detection that employs synthetic data during
training to reduce the need for manual annotation. By doing so, the proposed
model has the potential to significantly reduce the time and effort required for
manual annotation while still achieving high levels of accuracy. The bee traffic
counting model developed in this study demonstrates the robustness of the col-
lected data. In the future, the use of artificial intelligence with the collected data
will allow beekeepers and researchers to monitor the hive remotely with minimal
intrusion.
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Research, Innovation and Digital Policy.
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