Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/33060
Τίτλος: Enhancing Interaction with Data Lakes Using Digital Twins and Semantic Blueprints
Συγγραφείς: Loizou, Spyros 
Pingos, Michalis 
Andreou, Andreas S. 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Big Data Characteristics;Data Blueprints;Data Lakes;Digital Twins;Graphical Dashboard;Smart Data Processing
Ημερομηνία Έκδοσης: 1-Ιαν-2024
Πηγή: Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering, 2024, pp. 353-361
Start page: 353
End page: 361
Περίληψη: Advanced analytical techniques and sophisticated decision-making strategies are imperative for handling extensive volumes of data. As the quantity, diversity, and speed of data increase, there is a growing lack of confidence in the analytics process and resulting decisions. Despite recent advancements, such as metadata mechanisms in Big Data Processing and Systems of Deep Insight, effectively managing the vast and varied data from diverse sources remains a complex and unresolved challenge. Aiming to enhance interaction with Data Lakes, this paper introduces a framework based on a specialized semantic enrichment mechanism centred around data blueprints. The proposed framework takes into account unique characteristics of the data, guiding the process of locating sources and retrieving data from Data Lakes. More importantly, it facilitates end-user interaction without the need for programming skills or database management techniques. This is performed using Digital Twin functionality which offers model-based simulations and data-driven decision support.
URI: https://hdl.handle.net/20.500.14279/33060
ISBN: 9789897586965
DOI: 10.5220/0012620600003687
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Book Chapter
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

60
Last Week
8
Last month
7
checked on 28 Ιαν 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons