Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/33038
DC FieldValueLanguage
dc.contributor.authorCarstens, Nathan-
dc.contributor.authorMarkou, George-
dc.contributor.authorBakas, Nikolaos P.-
dc.date.accessioned2024-10-08T05:40:31Z-
dc.date.available2024-10-08T05:40:31Z-
dc.date.issued2022-01-01-
dc.identifier.citation14 th International Conference on Agents and Artificial Intelligence, 3-5 February 2022en_US
dc.identifier.isbn978-989-758-547-0-
dc.identifier.issn21843589-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/33038-
dc.description.abstractWith the development of technology and building materials, the world is moving towards creating a better and safer environment. One of the main challenges for reinforced concrete structures is the capability to withstand the seismic loads produced by earthquake excitations, through using the fundamental period of the structure. However, it is well documented that the current design formulae fail to predict the natural frequency of the considered structures due to their inability to incorporate the soil-structure interaction and other features of the structures. This research work extends a dataset containing 475 modal analysis results developed through a previous research work. The extended dataset was then used to develop three predictive fundamental period formulae using a machine learning algorithm that utilizes a higher-order, nonlinear regression modelling framework. The predictive formulae were validated with 60 out-of-sample modal analysis results. The numerical findings concluded that the fundamental period formulae proposed in this study possess superior prediction ability, compared to all other international proposed formulae, for the under-studied types of buildings.en_US
dc.language.isoenen_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectFundamental Mode Formulaeen_US
dc.subjectModal Analysisen_US
dc.subjectSoil-structure Interactionen_US
dc.subjectFinite Element Methoden_US
dc.subjectReinforced Concreteen_US
dc.subjectHybrid Modellingen_US
dc.titleImproved Predictive Fundamental Period Formula for Reinforced Concrete Structures through the Use of Machine Learning Algorithmsen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Pretoriaen_US
dc.collaborationRDC Informaticsen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.subject.categoryENGINEERING AND TECHNOLOGYen_US
dc.subject.categoryCivil Engineeringen_US
dc.subject.categoryOther Engineering and Technologiesen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.countrySouth Africaen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Agents and Artificial Intelligenceen_US
dc.identifier.doi10.5220/0010984500003116en_US
dc.identifier.scopus2-s2.0-85175853656-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85175853656-
dc.relation.volume2en_US
cut.common.academicyearemptyen_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-6891-7064-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s)

36
Last Week
0
Last month
5
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.