Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/32603
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorGiakoumi, Matheos-
dc.contributor.authorStephanou, Pavlos S.-
dc.contributor.authorKokkinidou, Despoina-
dc.contributor.authorPapastefanou, Chara-
dc.contributor.authorAnayiotos, Andreas-
dc.contributor.authorKapnisis, Konstantinos-
dc.date.accessioned2024-06-14T11:18:53Z-
dc.date.available2024-06-14T11:18:53Z-
dc.date.issued2024-04-08-
dc.identifier.citationACS biomaterials science and engineering, 2024, vol. 10, iss. 4, pp. 2534–2551en_US
dc.identifier.issn23739878-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/32603-
dc.description.abstractIn vitro testing methods offer valuable insights into the corrosion vulnerability of metal implants and enable prompt comparison between devices. However, they fall short in predicting the extent of leaching and the biodistribution of implant byproducts under in vivo conditions. Physiologically based toxicokinetic (PBTK) models are capable of quantitatively establishing such correlations and therefore provide a powerful tool in advancing nonclinical methods to test medical implants and assess patient exposure to implant debris. In this study, we present a multicompartment PBTK model and a simulation engine for toxicological risk assessment of vascular stents. The mathematical model consists of a detailed set of constitutive equations that describe the transfer of nickel ions from the device to peri-implant tissue and circulation and the nickel mass exchange between blood and the various tissues/organs and excreta. Model parameterization was performed using (1) in-house-produced data from immersion testing to compute the device-specific diffusion parameters and (2) full-scale animal in situ implantation studies to extract the mammalian-specific biokinetic functions that characterize the time-dependent biodistribution of the released ions. The PBTK model was put to the test using a simulation engine to estimate the concentration-time profiles, along with confidence intervals through probabilistic Monte Carlo, of nickel ions leaching from the implanted devices and determine if permissible exposure limits are exceeded. The model-derived output demonstrated prognostic conformity with reported experimental data, indicating that it may provide the basis for the broader use of modeling and simulation tools to guide the optimal design of implantable devices in compliance with exposure limits and other regulatory requirements.en_US
dc.description.sponsorshipThis work was cofunded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: POST-DOC/0916/0237).en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofACS Biomaterials Science and Engineeringen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectphysiologically based toxicokinetic (PBTK) modelsen_US
dc.subjectmouse stent implantation modelen_US
dc.subjectmultiobjective optimizationen_US
dc.subjectnickel leachingen_US
dc.subjectvascular stentsen_US
dc.subjecttoxicological risk assessmenten_US
dc.titleA Predictive Toxicokinetic Model for Nickel Leaching from Vascular Stentsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationCp Foodlab Ltd.en_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1021/acsbiomaterials.3c01436en_US
dc.identifier.pmid38525821-
dc.identifier.scopus2-s2.0-85188717126-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85188717126-
dc.relation.issue4en_US
dc.relation.volume10en_US
cut.common.academicyear2024-2025en_US
dc.identifier.spage2534en_US
dc.identifier.epage2551en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3182-0581-
crisitem.author.orcid0000-0003-4471-7604-
crisitem.author.orcid0000-0002-4999-0231-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
giakoumi-et-al-2024-a-predictive-toxicokinetic-model-for-nickel-leaching-from-vascular-stents.pdfOpen Access9.88 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Page view(s)

116
Last Week
1
Last month
30
checked on 14 Μαρ 2025

Download(s)

115
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons