Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/3260
Title: | Oxidative and nitrosative-based signaling wave and posttranslational modification orchestrates the acclimation of citrus plants to salinity stress | Authors: | Tanou, Georgia Filippou, Panagiota S. Belghazi, Maya Job, Dominique Diamantidis, Grigorios Fotopoulos, Vasileios Molassiotis, Athanassios |
metadata.dc.contributor.other: | Φιλίππου, Παναγιώτα Φωτόπουλος, Βασίλειος |
Major Field of Science: | Natural Sciences | Field Category: | Biological Sciences | Issue Date: | 17-Nov-2011 | Source: | 4th International Workshop - Cost action FA0605 Plant Abiotic Stress: From Systems Biology to Sustainable Agriculture, 17-19 November 2011, Limassol Cyprus | Conference: | International Workshop - Cost action FA0605 Plant Abiotic Stress: From Systems Biology to Sustainable Agriculture | Abstract: | Reactive oxygen species and reactive nitrogen species involved in a plethora of physiologic and pathologic conditions in plants, however knowledge on the oxidative and nitrosative signaling outcomes is still unclear. To better understand how oxidative and nitrosative signals are integrated to eventually regulate cellular adjustments to external conditions, local and systemic responses were investigated in roots and leaves of citrus plants after root treatment with H202 or sodium nitroprusside (SNP; nitric oxide donor), pre-treatment with H202 or SNP followed by NaCI stress, and direct NaCI stress for 8 days. Phenotypic and physiological data showed that preexposure to H202 or SNP induced acclimation to subsequent salinity stress. Both H202 and NO were locally and systemically accumulated in the citrus's tissues upon chemical treatments and/or NaCl. Combined histochemical and fluorescent approaches document the existence of a vascular tissue-driven long distance ROS and NO signaling mechanism. Transcriptional analysis of genes diagnostic for H202 and NO signaling just after chemical treatments or following 8 days of salinity revealed various tissue- and time- specific feedbacklfeedforward mechanisms controlling internal H202 and NO homeostasis. Also evidence presented showing that protein carbonylation, nitration and S-nitrosylation encode an 'oxidative and nitrosative memory' following by H202 or SNP pre-treatments that could be involved in acclimation to salt stress. In addition, for the first time, a whole-plant analysis of the oxyproteome, nitroproteome and nitrosoproteome is presented characterising potential carbonylated, nitrated and nitrosylated targets proteins with distinct or overlapped signatures. This work provides a global framework to better understand the oxidative and nitrosative signaling network under physiological and stressful conditions. | URI: | https://hdl.handle.net/20.500.14279/3260 | Type: | Conference Papers | Affiliation : | Aristotle University of Thessaloniki Cyprus University of Technology Institut Federatif de Recherche Jean Roche |
Publication Type: | Peer Reviewed |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
INPAS Limassol Meeting Abstract 2.pdf | 967.92 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
426
Last Week
0
0
Last month
4
4
checked on Nov 6, 2024
Download(s)
87
checked on Nov 6, 2024
Google ScholarTM
Check
This item is licensed under a Creative Commons License