Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/31672
DC FieldValueLanguage
dc.contributor.authorTsakiridis, Sotirios-
dc.contributor.authorPapaioannou, Nikolaos-
dc.contributor.authorTsimpiris, Alkiviadis-
dc.contributor.authorVarsamis, Dimitrios-
dc.contributor.authorPapakonstantinou, Apostolos-
dc.date.accessioned2024-02-28T10:43:30Z-
dc.date.available2024-02-28T10:43:30Z-
dc.date.issued2023-
dc.identifier.citationContemporary Engineering Sciences, 2023, vol. 16, no. 1, pp. 55-70en_US
dc.identifier.issn13147641-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/31672-
dc.description.abstractThe use of contemporary information and communication technol- ogy to maximize agricultural output while reducing labor costs is known as ”smart agriculture”. This term is becoming more and more prevalent. The primary challenge in the agricultural sector lies in the vastness of crops, coupled with varied topography and soil instability, making con- trol challenging. In this paper, a system for determining the average predicted height of healthy plants at a given growth stage is proposed and evaluated. Based on this height, we then classify agricultural plants as healthy or unhealthy. It’s important to note that our system works with any crop kind and growth stage.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofContemporary Engineering Sciencesen_US
dc.rightsCreative Commons by-nc-nd Attribution Licenseen_US
dc.subjectUnsupervised Learningen_US
dc.subjectUAVen_US
dc.subjectSmart Agricultureen_US
dc.subjectClusteringen_US
dc.titleSmart agriculture: Predictive height analysis for universal crop health classificationen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationInternational Hellenic Universityen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.12988/ces.2023.93115en_US
dc.relation.issue1en_US
dc.relation.volume16en_US
cut.common.academicyear2023-2024en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-6464-2008-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File SizeFormat
tsimpirisCES1-2023.pdf786.14 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s)

140
Last Week
1
Last month
30
checked on Mar 14, 2025

Download(s)

65
checked on Mar 14, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.