Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30882
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorRomero, Alejandro-
dc.contributor.authorBellas, Francisco-
dc.contributor.authorDuro, Richard-
dc.date.accessioned2023-11-29T10:02:54Z-
dc.date.available2023-11-29T10:02:54Z-
dc.date.issued2023-02-02-
dc.identifier.citationSensors, 2023, vol. 23, iss. 3en_US
dc.identifier.issn14248220-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30882-
dc.description.abstractThis paper addresses the problem of achieving lifelong open-ended learning autonomy in robotics, and how different cognitive architectures provide functionalities that support it. To this end, we analyze a set of well-known cognitive architectures in the literature considering the different components they address and how they implement them. Among the main functionalities that are taken as relevant for lifelong open-ended learning autonomy are the fact that architectures must contemplate learning, and the availability of contextual memory systems, motivations or attention. Additionally, we try to establish which of them were actually applied to real robot scenarios. It transpires that in their current form, none of them are completely ready to address this challenge, but some of them do provide some indications on the paths to follow in some of the aspects they contemplate. It can be gleaned that for lifelong open-ended learning autonomy, motivational systems that allow finding domain-dependent goals from general internal drives, contextual long-term memory systems that all allow for associative learning and retrieval of knowledge, and robust learning systems would be the main components required. Nevertheless, other components, such as attention mechanisms or representation management systems, would greatly facilitate operation in complex domains.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofSensorsen_US
dc.rights© by the authorsen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectautonomous robotsen_US
dc.subjectcognitive architecturesen_US
dc.subjectlifelong learningen_US
dc.subjectopen-ended learningen_US
dc.titleA Perspective on Lifelong Open-Ended Learning Autonomy for Robotics through Cognitive Architecturesen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.3390/s23031611en_US
dc.identifier.pmid36772651-
dc.identifier.scopus2-s2.0-85147892852-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85147892852-
dc.relation.issue3en_US
dc.relation.volume23en_US
cut.common.academicyear2022-2023en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1424-8220-
crisitem.journal.publisherMDPI-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
sensors-23-01611.pdfFull text738.26 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

4
checked on 12 Μαρ 2025

Page view(s) 20

151
Last Week
2
Last month
30
checked on 13 Μαρ 2025

Download(s) 50

82
checked on 13 Μαρ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons