Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30873
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-28T11:20:01Z-
dc.date.available2023-11-28T11:20:01Z-
dc.date.issued2010-11-12-
dc.identifier.citation11th International Conference on Parallel Problem Solving from Nature, PPSN 2010, 11 - 15 September 2010en_US
dc.identifier.isbn3642158706-
dc.identifier.issn03029743-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30873-
dc.description.abstractIn recent years, there has been a growing interest in addressing dynamic optimization problems (DOPs) using evolutionary algorithms (EAs). Several approaches have been developed for EAs to increase the diversity of the population and enhance the performance of the algorithm for DOPs. Among these approaches, immigrants schemes have been found beneficial for EAs for DOPs. In this paper, random, elitism-based, and hybrid immigrants schemes are applied to ant colony optimization (ACO) for the dynamic travelling salesman problem (DTSP). The experimental results show that random immigrants are beneficial for ACO in fast changing environments, whereas elitism-based immigrants are beneficial for ACO in slowly changing environments. The ACO algorithm with hybrid immigrants scheme combines the merits of the random and elitism-based immigrants schemes. Moreover, the results show that the proposed algorithms outperform compared approaches in almost all dynamic test cases and that immigrant schemes efficiently improve the performance of ACO algorithms in DTSP. © 2010 Springer-Verlag.en_US
dc.language.isoenen_US
dc.rights© Springer-Verlagen_US
dc.subjectAnt Colony Optimizationen_US
dc.subjectDynamic Optimizationen_US
dc.subjectImmigrants Schemesen_US
dc.titleAnt colony optimization with immigrants schemes in dynamic environmentsen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Leicesteren_US
dc.collaborationBrunel University Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.identifier.doi10.1007/978-3-642-15871-1_38en_US
dc.identifier.scopus2-s2.0-78149232146en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/78149232146en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issuePART 2en_US
dc.relation.volume6239 LNCSen_US
cut.common.academicyear2010-2011en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

39
checked on Mar 14, 2024

Page view(s) 20

76
Last Week
1
Last month
1
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.