Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30872
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-28T11:15:59Z-
dc.date.available2023-11-28T11:15:59Z-
dc.date.issued2010-12-21-
dc.identifier.citationUK Workshop on Computational Intelligence, UKCI 2010, 8 - 10 September 2010en_US
dc.identifier.isbn9781424487752-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30872-
dc.description.abstractAnts in conventional ant colony optimization (ACO) algorithms use pheromone to communicate. Usually, this indirect communication leads the algorithm to a stagnation behaviour, where the ants follow the same path from early stages. This occurs because high levels of pheromone are developed, which force the ants to follow the same corresponding trails. As a result, the population gets trapped into a local optimum solution which is difficult to escape from it. In this paper, a direct communication (DC) scheme is proposed where ants are able to exchange cities with other ants that belong to their communication range. Experiments show that the DC scheme delays convergence and improves the solution quality of conventional ACO algorithms regarding the traveling salesman problem, since it guides the population towards the global optimum solution. The ACO algorithm with the proposed DC scheme has better performance, especially on large problem instances, even though it increases the computational time in comparison with a conventional ACO algorithm.en_US
dc.language.isoenen_US
dc.subjectCommunicationen_US
dc.subjectConvergence of numerical methodsen_US
dc.subjectPattern matchingen_US
dc.subjectProblem solvingen_US
dc.subjectTraveling salesman problemen_US
dc.subjectACO algorithmsen_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.titleAnt colony optimization with direct communication for the traveling salesman problemen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Leicesteren_US
dc.collaborationBrunel University Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2010 UK Workshop on Computational Intelligence, UKCI 2010en_US
dc.identifier.doi10.1109/UKCI.2010.5625608en_US
dc.identifier.scopus2-s2.0-78650214777en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/78650214777en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2010-2011en_US
item.openairetypeconferenceObject-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

6
checked on Mar 14, 2024

Page view(s)

87
Last Week
0
Last month
3
checked on Dec 4, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.