Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30868
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.contributor.authorYao, Xin-
dc.date.accessioned2023-11-28T10:55:36Z-
dc.date.available2023-11-28T10:55:36Z-
dc.date.issued2012-09-24-
dc.identifier.citation12th International Conference on Parallel Problem Solving from Nature, PPSN 2012, 1 - 5 September 2012en_US
dc.identifier.isbn9783642329630-
dc.identifier.issn03029743-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30868-
dc.description.abstractSeveral general benchmark generators (BGs) are available for the dynamic continuous optimization domain, in which generators use functions with adjustable parameters to simulate shifting landscapes. In the combinatorial domain the work is still on early stages. Many attempts of dynamic BGs are limited to the range of algorithms and combinatorial optimization problems (COPs) they are compatible with, and usually the optimum is not known during the dynamic changes of the environment. In this paper, we propose a BG that can address the aforementioned limitations of existing BGs. The proposed generator allows full control over some important aspects of the dynamics, in which several test environments with different properties can be generated where the optimum is known, without re-optimization. © 2012 Springer-Verlag.en_US
dc.language.isoenen_US
dc.rights© Springer-Verlagen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectAdjustable parametersen_US
dc.subjectCombinatorial optimization problemsen_US
dc.subjectContinuous optimizationen_US
dc.subjectDynamic changesen_US
dc.subjectFull controlen_US
dc.subjectTest Environmenten_US
dc.subjectOptimizationen_US
dc.titleA benchmark generator for dynamic permutation-encoded problemsen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Leicesteren_US
dc.collaborationBrunel University Londonen_US
dc.collaborationUniversity of Birminghamen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.identifier.doi10.1007/978-3-642-32964-7_51en_US
dc.identifier.scopus2-s2.0-84866361060en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84866361060en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issuePART 2en_US
dc.relation.volume7492 LNCSen_US
cut.common.academicyear2012-2013en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

27
checked on Mar 14, 2024

Page view(s)

95
Last Week
0
Last month
9
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.