Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/30867
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mavrovouniotis, Michalis | - |
dc.contributor.author | Yang, Shengxiang | - |
dc.date.accessioned | 2023-11-28T10:49:47Z | - |
dc.date.available | 2023-11-28T10:49:47Z | - |
dc.date.issued | 2012-10-04 | - |
dc.identifier.citation | IEEE Congress on Evolutionary Computation, CEC 2012, 10 - 15 June 2012 | en_US |
dc.identifier.isbn | 9781467315098 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/30867 | - |
dc.description.abstract | A recent integration showed that ant colony optimization (ACO) algorithms with immigrants schemes perform well on different variations of the dynamic travelling salesman problem. In this paper, we address ACO for the dynamic vehicle routing problem (DVRP) with traffic factor where the changes occur in a cyclic pattern. In other words, previous environments will re-appear in the future. Memory-based immigrants are used with ACO in order to collect the best solutions from the environments and use them to generate diversity and transfer knowledge when a dynamic change occurs. The results show that the proposed algorithm, with an appropriate size of memory and immigrant replacement rate, outperforms other peer ACO algorithms on different DVRP test cases. © 2012 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.rights | © IEEE | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Traveling salesman problem | en_US |
dc.subject | ACO algorithms | en_US |
dc.subject | Ant Colony Optimization (ACO) | en_US |
dc.subject | Ant Colony Optimization algorithms | en_US |
dc.subject | Cyclic patterns | en_US |
dc.subject | Dynamic changes | en_US |
dc.subject | Dynamic vehicle routing problems | en_US |
dc.subject | Replacement rates | en_US |
dc.subject | Test case | en_US |
dc.subject | Traffic factors | en_US |
dc.subject | Travelling salesman problem | en_US |
dc.subject | Artificial intelligence | en_US |
dc.title | Ant colony optimization with memory-based immigrants for the dynamic vehicle routing problem | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | University of Leicester | en_US |
dc.collaboration | Brunel University London | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.relation.conference | 2012 IEEE Congress on Evolutionary Computation, CEC 2012 | en_US |
dc.identifier.doi | 10.1109/CEC.2012.6252885 | en_US |
dc.identifier.scopus | 2-s2.0-84866847277 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84866847277 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
cut.common.academicyear | 2012-2013 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-5281-4175 | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
20
31
checked on Mar 14, 2024
Page view(s)
86
Last Week
0
0
Last month
2
2
checked on Nov 22, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.