Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30867
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-28T10:49:47Z-
dc.date.available2023-11-28T10:49:47Z-
dc.date.issued2012-10-04-
dc.identifier.citationIEEE Congress on Evolutionary Computation, CEC 2012, 10 - 15 June 2012en_US
dc.identifier.isbn9781467315098-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30867-
dc.description.abstractA recent integration showed that ant colony optimization (ACO) algorithms with immigrants schemes perform well on different variations of the dynamic travelling salesman problem. In this paper, we address ACO for the dynamic vehicle routing problem (DVRP) with traffic factor where the changes occur in a cyclic pattern. In other words, previous environments will re-appear in the future. Memory-based immigrants are used with ACO in order to collect the best solutions from the environments and use them to generate diversity and transfer knowledge when a dynamic change occurs. The results show that the proposed algorithm, with an appropriate size of memory and immigrant replacement rate, outperforms other peer ACO algorithms on different DVRP test cases. © 2012 IEEE.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectTraveling salesman problemen_US
dc.subjectACO algorithmsen_US
dc.subjectAnt Colony Optimization (ACO)en_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.subjectCyclic patternsen_US
dc.subjectDynamic changesen_US
dc.subjectDynamic vehicle routing problemsen_US
dc.subjectReplacement ratesen_US
dc.subjectTest caseen_US
dc.subjectTraffic factorsen_US
dc.subjectTravelling salesman problemen_US
dc.subjectArtificial intelligenceen_US
dc.titleAnt colony optimization with memory-based immigrants for the dynamic vehicle routing problemen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Leicesteren_US
dc.collaborationBrunel University Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2012 IEEE Congress on Evolutionary Computation, CEC 2012en_US
dc.identifier.doi10.1109/CEC.2012.6252885en_US
dc.identifier.scopus2-s2.0-84866847277en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84866847277en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2012-2013en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

31
checked on Mar 14, 2024

Page view(s)

86
Last Week
0
Last month
2
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.