Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30866
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-28T10:44:32Z-
dc.date.available2023-11-28T10:44:32Z-
dc.date.issued2012-12-14-
dc.identifier.citation10th International Conference on Evolution Artificielle, EA 2011, 24 - 26 October 2011en_US
dc.identifier.isbn9783642355325-
dc.identifier.issn03029743-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30866-
dc.description.abstractAnt colony optimization (ACO) algorithms have proved to be powerful methods to address dynamic optimization problems. However, once the population converges to a solution and a dynamic change occurs, it is difficult for the population to adapt to the new environment since high levels of pheromone will be generated to a single trail and force the ants to follow it even after a dynamic change. A good solution is to maintain the diversity via transferring knowledge to the pheromone trails. Hence, we propose an immigrants scheme based on environmental information for ACO to address the dynamic travelling salesman problem (DTSP) with traffic factor. The immigrants are generated using a probabilistic distribution based on the frequency of cities, constructed from a number of ants of the previous iteration, and replace the worst ants in the current population. Experimental results based on different DTSP test cases show that the proposed immigrants scheme enhances the performance of ACO by the knowledge transferred from the previous environment and the generation of guided diversity. © 2012 Springer-Verlag.en_US
dc.language.isoenen_US
dc.rights© Springer-Verlagen_US
dc.subjectArtificial intelligenceen_US
dc.subjectIterative methodsen_US
dc.subjectProbability distributionsen_US
dc.subjectTraveling salesman problemen_US
dc.subjectAnt Colony Optimization (ACO)en_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.subjectDynamic changesen_US
dc.subjectDynamic optimization problem (DOP)en_US
dc.subjectEnvironmental informationen_US
dc.subjectPheromone trailsen_US
dc.subjectProbabilistic distributionen_US
dc.subjectTest caseen_US
dc.subjectTraffic factorsen_US
dc.subjectTravelling salesman problemen_US
dc.subjectAlgorithmsen_US
dc.titleAn immigrants scheme based on environmental information for ant colony optimization for the dynamic travelling salesman problemen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Leicesteren_US
dc.collaborationBrunel University Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.identifier.doi10.1007/978-3-642-35533-2_1en_US
dc.identifier.scopus2-s2.0-84870797861en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84870797861en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.volume7401 LNCSen_US
cut.common.academicyear2022-2023en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

8
checked on Mar 14, 2024

Page view(s)

89
Last Week
0
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.