Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30861
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-27T11:00:50Z-
dc.date.available2023-11-27T11:00:50Z-
dc.date.issued2013-08-21-
dc.identifier.citation2013 IEEE Congress on Evolutionary Computation, CEC 2013, 20 - 23June 2013en_US
dc.identifier.isbn9781479904549-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30861-
dc.description.abstractOne approach integrated with genetic algorithms (GAs) to address dynamic optimization problems (DOPs) is to maintain diversity of the population via introducing immigrants. Many immigrants schemes have been proposed that differ on the way new individuals are generated, e.g., mutating the best individual of the previous environment to generate elitism-based immigrants. This paper examines the performance of elitism-based immigrants GA (EIGA) with different immigrant mutation probabilities and proposes an adaptive mechanism that tends to improve the performance in DOPs. Our experimental study shows that the proposed adaptive immigrants GA outperforms EIGA in almost all dynamic test cases and avoids the tedious work of fine-tuning the immigrant mutation probability parameter. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectAdaptive mechanismen_US
dc.subjectDynamic environmentsen_US
dc.subjectDynamic optimization problem (DOP)en_US
dc.subjectDynamic testsen_US
dc.subjectExperimental studiesen_US
dc.subjectGenetic algorithm (GAs)en_US
dc.subjectMutation probabilityen_US
dc.subjectGenetic algorithmsen_US
dc.titleGenetic algorithms with adaptive immigrants for dynamic environmentsen_US
dc.typeConference Papersen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2013 IEEE Congress on Evolutionary Computation, CEC 2013en_US
dc.identifier.doi10.1109/CEC.2013.6557821en_US
dc.identifier.scopus2-s2.0-84881582945en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84881582945en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2013-2014en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

12
checked on Mar 14, 2024

Page view(s) 20

83
Last Week
1
Last month
0
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.