Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30860
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-27T10:56:54Z-
dc.date.available2023-11-27T10:56:54Z-
dc.date.issued2013-12-31-
dc.identifier.citation2013 13th UK Workshop on Computational Intelligence, UKCI 2013, 9 - 11 September 2013en_US
dc.identifier.isbn9781479915682-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30860-
dc.description.abstractThe back-propagation (BP) technique is a widely used technique to train artificial neural networks (ANNs). However, BP often gets trapped in a local optimum. Hence, hybrid training was introduced, e.g., a global optimization algorithm with BP, to address this drawback. The key idea of hybrid training is to use global optimization algorithms to provide BP with good initial connection weights. In hybrid training, evolutionary algorithms are widely used, whereas ant colony optimization (ACO) algorithms are rarely used, as the global optimization algorithms. And so far, only the basic ACO algorithm has been used to evolve the connection weights of ANNs. In this paper, we hybridize one of the best performing variations of ACO with BP. The difference of the improved ACO variation from the basic ACO algorithm lies in that pheromone trail limits are imposed to avoid stagnation behaviour. The experimental results show that the proposed training method outperforms other peer training methods. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectAnt colony optimizationen_US
dc.subjectConstrained optimizationen_US
dc.subjectGlobal optimizationen_US
dc.subjectNeural networksen_US
dc.subjectACO algorithmsen_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.subjectConnection weightsen_US
dc.subjectEvolving neural networken_US
dc.subjectGlobal optimization algorithmen_US
dc.subjectHybrid trainingen_US
dc.subjectPheromone trailsen_US
dc.subjectTraining methodsen_US
dc.subjectAlgorithmsen_US
dc.titleEvolving neural networks using ant colony optimization with pheromone trail limitsen_US
dc.typeConference Papersen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2013 13th UK Workshop on Computational Intelligence, UKCI 2013en_US
dc.identifier.doi10.1109/UKCI.2013.6651282en_US
dc.identifier.scopus2-s2.0-84891074769en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84891074769en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2013-2014en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

19
checked on Mar 14, 2024

Page view(s) 20

87
Last Week
0
Last month
2
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.