Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30859
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-27T10:52:03Z-
dc.date.available2023-11-27T10:52:03Z-
dc.date.issued2014-01-12-
dc.identifier.citation2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments, CIDUE 2014, Orlando, Florida, 9 - 12 December 2014en_US
dc.identifier.isbn9781479945160-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30859-
dc.description.abstractThe performance of ant colony optimization (ACO) algorithms in tackling optimization problems strongly depends on different parameters. One of the most important parameters in ACO algorithms when addressing dynamic optimization problems (DOPs) is the pheromone evaporation rate. The role of pheromone evaporation in DOPs is to improve the adaptation capabilities of the algorithm. When a dynamic change occurs, the pheromone trails of the previous environment will not match the new environment especially if the changing environments are not similar. Therefore, pheromone evaporation helps to eliminate pheromone trails that may misguide ants without destroying any knowledge gained from previous environments. In this paper, a self-adaptive evaporation mechanism is proposed in which ants are responsible to select an appropriate evaporation rate while tracking the moving optimum in DOPs. Experimental results show the efficiency of the proposed self-adaptive evaporation mechanism on improving the performance of ACO algorithms for DOPs.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDynamicsen_US
dc.subjectEvaporationen_US
dc.subjectParameter estimationen_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.subjectChanging environmenten_US
dc.subjectDynamic changesen_US
dc.subjectDynamic environmentsen_US
dc.subjectDynamic optimization problem (DOP)en_US
dc.subjectEvaporation rateen_US
dc.subjectOptimization problemsen_US
dc.subjectPheromone trailsen_US
dc.subjectAnt colony optimizationen_US
dc.titleAnt colony optimization with self-adaptive evaporation rate in dynamic environmentsen_US
dc.typeConference Papersen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceIEEE SSCI 2014: 2014 IEEE Symposium Series on Computational Intelligence - CIDUE 2014: 2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments, Proceedingsen_US
dc.identifier.doi10.1109/CIDUE.2014.7007866en_US
dc.identifier.scopus2-s2.0-84922918119en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84922918119en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2014-2015en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

18
checked on Mar 14, 2024

Page view(s)

121
Last Week
0
Last month
6
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.