Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30856
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-27T10:23:57Z-
dc.date.available2023-11-27T10:23:57Z-
dc.date.issued2014-09-16-
dc.identifier.citation2014 IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6 - 11 July 2014en_US
dc.identifier.isbn9781479914883-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30856-
dc.description.abstractDynamic optimization problems (DOPs) have been a major challenge for ant colony optimization (ACO) algorithms. The integration of ACO algorithms with immigrants schemes showed promising results on different DOPs. Each type of immigrants scheme aims to address a DOP with specific characteristics. For example, random and elitism-based immigrants perform well on severely and slightly changing environments, respectively. In this paper, two hybrid immigrants, i.e., non-interactive and interactive, schemes are proposed to combine the merits of the aforementioned immigrants schemes. The experiments on a series of dynamic travelling salesman problems showed that the hybridization of immigrants further improves the performance of ACO algorithms.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectTraveling salesman problemen_US
dc.subjectACO algorithmsen_US
dc.subjectAnt algorithmsen_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.subjectChanging environmenten_US
dc.subjectDynamic environmentsen_US
dc.subjectDynamic optimization problem (DOP)en_US
dc.subjectTravelling salesman problemen_US
dc.subjectAnt colony optimizationen_US
dc.titleInteractive and non-interactive hybrid immigrants schemes for ant algorithms in dynamic environmentsen_US
dc.typeConference Papersen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceProceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014en_US
dc.identifier.doi10.1109/CEC.2014.6900481en_US
dc.identifier.scopus2-s2.0-84908584276en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84908584276en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2014-2015en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

9
checked on Mar 14, 2024

Page view(s) 20

90
Last Week
6
Last month
6
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.