Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30849
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorNeri, Ferrante-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-23T12:21:16Z-
dc.date.available2023-11-23T12:21:16Z-
dc.date.issued2015-05-25-
dc.identifier.citationIEEE Congress on Evolutionary Computation, CEC 2015, Sendai, Japan, 25 - 28 May 2015en_US
dc.identifier.isbn9781479974924-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30849-
dc.description.abstractThis paper proposes a novel adaptive local search algorithm for tackling real-valued (or continuous) dynamic optimization problems. The proposed algorithm is a simple single-solution based metaheuristic that perturbs the variables separately to select the search direction for the following step and adapts its step size to the gradient. The search directions that appear to be the most promising are rewarded by a step size increase while the unsuccessful moves attempt to reverse the search direction with a reduced step size. When the environment is subject to changes, a new solution is sampled and crosses over the best solution in the previous environment. Furthermore, the algorithm makes use of a small archive where the best solutions are saved. Experimental results show that the proposed algorithm, despite its simplicity, is competitive with complex population-based algorithms for tested dynamic optimization problems.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectAlgorithmsen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectLearning algorithmsen_US
dc.subjectLocal search (optimization)en_US
dc.subjectDynamic optimizationen_US
dc.subjectDynamic optimization problem (DOP)en_US
dc.subjectLocal search algorithmen_US
dc.subjectMetaheuristicen_US
dc.subjectPopulation-based algorithmen_US
dc.subjectSearch directionen_US
dc.subjectStep sizeen_US
dc.subjectOptimizationen_US
dc.titleAn adaptive local search algorithm for real-valued dynamic optimizationen_US
dc.typeConference Papersen_US
dc.collaborationDe Montfort Universityen_US
dc.collaborationUniversity of Jyväskyläen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.countryFinlanden_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedingsen_US
dc.identifier.doi10.1109/CEC.2015.7257050en_US
dc.identifier.scopus2-s2.0-84963595978en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84963595978en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2015-2016en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

15
checked on Mar 14, 2024

Page view(s) 20

89
Last Week
0
Last month
1
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.