Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30843
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-23T10:08:53Z-
dc.date.available2023-11-23T10:08:53Z-
dc.date.issued2016-07-24-
dc.identifier.citation2016 IEEE Congress on Evolutionary Computation, CEC 2016Vancouver, 24 - 29 July 2016en_US
dc.identifier.isbn9781509006229-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30843-
dc.description.abstractIn this paper, the effect of the population size on the performance of the MAX-MIN ant system for dynamic optimization problems (DOPs) is investigated. DOPs are generated with the dynamic benchmark generator for permutation-encoded problems. In particular, the empirical study investigates: a) possible dependencies of the population size parameter with the dynamic properties of DOPs; b) the effect of the population size with the problem size of the DOP; and c) whether a larger population size with less algorithmic iterations performs better than a smaller population size with more algorithmic iterations given the same computational budget for each environmental change. Our study shows that the population size is sensitive to the magnitude of change of the DOP and less sensitive to the frequency of change and the problem size. It also shows that a longer duration in terms of algorithmic iterations results in a better performance.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectBudget controlen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectComputational budgeten_US
dc.subjectDynamic environmentsen_US
dc.subjectDynamic optimization problem (DOP)en_US
dc.subjectDynamic propertyen_US
dc.subjectEmpirical studiesen_US
dc.subjectEnvironmental changeen_US
dc.subjectMAX MIN Ant systemsen_US
dc.subjectPopulation sizesen_US
dc.subjectPopulation statisticsen_US
dc.titleEmpirical study on the effect of population size on MAX-MIN ant system in dynamic environmentsen_US
dc.typeConference Papersen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2016 IEEE Congress on Evolutionary Computation, CEC 2016en_US
dc.identifier.doi10.1109/CEC.2016.7743880en_US
dc.identifier.scopus2-s2.0-85008245238en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85008245238en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2016-2017en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

5
checked on Mar 14, 2024

Page view(s)

100
Last Week
0
Last month
6
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.