Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/30842
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mavrovouniotis, Michalis | - |
dc.contributor.author | Ioannou, Anastasia | - |
dc.contributor.author | Yang, Shengxiang | - |
dc.date.accessioned | 2023-11-23T09:25:06Z | - |
dc.date.available | 2023-11-23T09:25:06Z | - |
dc.date.issued | 2017-04-19 | - |
dc.identifier.citation | 20th European Conference on the Applications of Evolutionary Computation, EvoApplications 2017, Amsterdam, 19 - 21 April 2017 | en_US |
dc.identifier.isbn | 9783319557915 | - |
dc.identifier.issn | 03029743 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/30842 | - |
dc.description.abstract | The performance of the MAX -MIN ant system (MMAS) in dynamic optimization problems (DOPs) is sensitive to the colony size. In particular, a large colony size may waste computational resources whereas a small colony size may restrict the searching capabilities of the algorithm. There is a trade off in the behaviour of the algorithm between the early and later stages of the optimization process. A smaller colony size leads to better performance on shorter runs whereas a larger colony size leads to better performance on longer runs. In this paper, pre-scheduling of varying the colony size of MMAS is investigated in dynamic environments. | en_US |
dc.language.iso | en | en_US |
dc.rights | © Springer International Publishing AG | en_US |
dc.subject | Economic and social effects | en_US |
dc.subject | Optimization | en_US |
dc.title | Pre-scheduled colony size variation in dynamic environments | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Nottingham Trent University | en_US |
dc.collaboration | University of Leicester | en_US |
dc.collaboration | De Montfort University | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.relation.conference | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.identifier.doi | 10.1007/978-3-319-55792-2_9 | en_US |
dc.identifier.scopus | 2-s2.0-85017520321 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85017520321 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
cut.common.academicyear | 2017-2018 | en_US |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | conferenceObject | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-5281-4175 | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
50
1
checked on Mar 14, 2024
Page view(s) 20
94
Last Week
1
1
Last month
1
1
checked on Jan 3, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.