Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30839
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorMüller, Felipe M.-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-22T12:57:38Z-
dc.date.available2023-11-22T12:57:38Z-
dc.date.issued2017-07-01-
dc.identifier.citationIEEE Transactions on Cybernetics, vol. 47, iss. 7, pp. 1743 - 1756en_US
dc.identifier.issn21682267-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30839-
dc.description.abstractFor a dynamic traveling salesman problem (DTSP), the weights (or traveling times) between two cities (or nodes) may be subject to changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to tackle such problems due to their adaptation capabilities. It has been shown that the integration of local search operators can significantly improve the performance of ACO. In this paper, a memetic ACO algorithm, where a local search operator (called unstring and string) is integrated into ACO, is proposed to address DTSPs. The best solution from ACO is passed to the local search operator, which removes and inserts cities in such a way that improves the solution quality. The proposed memetic ACO algorithm is designed to address both symmetric and asymmetric DTSPs. The experimental results show the efficiency of the proposed memetic algorithm for addressing DTSPs in comparison with other state-of-the-art algorithms.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Cyberneticsen_US
dc.rights© IEEEen_US
dc.subjectAnt colony optimization (ACO)en_US
dc.subjectdynamic traveling salesman problem (DTSP)en_US
dc.subjectlocal searchen_US
dc.subjectmemetic algorithmen_US
dc.titleAnt Colony Optimization with Local Search for Dynamic Traveling Salesman Problemsen_US
dc.typeArticleen_US
dc.collaborationDe Montfort Universityen_US
dc.collaborationFederal Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TCYB.2016.2556742en_US
dc.identifier.pmid27323387en
dc.identifier.scopus2-s2.0-84974795093en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84974795093en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid0000-0001-7222-4917en
dc.relation.issue7en_US
dc.relation.volume47en_US
cut.common.academicyear2017-2018en_US
dc.identifier.spage1743en_US
dc.identifier.epage1756en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

184
checked on Nov 21, 2024

Page view(s)

117
Last Week
1
Last month
3
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.