Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30837
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-22T11:39:26Z-
dc.date.available2023-11-22T11:39:26Z-
dc.date.issued2018-01-01-
dc.identifier.citationSwarm Intelligence - Volume 1: Principles, current algorithms and methods, pp. 121 - 142en_US
dc.identifier.isbn9781785616273-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30837-
dc.description.abstractThe ant colony optimization (ACO) meta-heuristic was inspired from the foraging behaviour of real ant colonies. In particular, real ants communicate indirectly via pheromone trails and find the shortest path. Although real ants proved that they can find the shortest path when the available paths are known a prior, they may face serious challenges when some paths are made available after the colony has converged to a path. This is because the colony may continue to follow the current path rather than exploring the new paths in case a shorter path is available. For the ACO meta-heuristic, the challenges are similar when applied to dynamic optimization problems (DOPs). Once the algorithm converges, it loses its adaptation capabilities and may have poor performance in DOPs. Several strategies have been integrated with ACO to address difficult combinatorial DOPs. Their performance proved that ACO is a powerful computational technique for combinatorial DOPs once enhanced. This chapter investigates the applications of ACO for combinatorial DOPs.en_US
dc.language.isoenen_US
dc.relation.ispartofSwarm Intelligence - Volume 1: Principles, current algorithms and methodsen_US
dc.rights© The Institution of Engineering and Technologyen_US
dc.subjectACO meta-heuristicen_US
dc.subjectAnt colony optimisationen_US
dc.subjectAnt colony optimization meta-heuristicen_US
dc.subjectCombinatorial DOPen_US
dc.subjectCombinatorial mathematicsen_US
dc.subjectSearch problemsen_US
dc.subjectDynamic combinatorial optimization problemsen_US
dc.subjectForaging behaviouren_US
dc.subjectOptimisation techniquesen_US
dc.titleAnt colony optimization for dynamic combinatorial optimization problemsen_US
dc.typeBook Chapteren_US
dc.collaborationNottingham Trent Universityen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1049/PBCE119F_ch5en_US
dc.identifier.scopus2-s2.0-85110377765en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85110377765en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2018-2019en_US
dc.identifier.spage121en_US
dc.identifier.epage142en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypebookPart-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

2
checked on Mar 14, 2024

Page view(s) 20

95
Last Week
5
Last month
1
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.