Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30835
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorEllinas, Georgios-
dc.contributor.authorPolycarpou, Marios M.-
dc.date.accessioned2023-11-22T09:59:44Z-
dc.date.available2023-11-22T09:59:44Z-
dc.date.issued2018-07-02-
dc.identifier.citation8th IEEE Symposium Series on Computational Intelligence, SSCI 2018, Bangalore, India, 18 - 21 November 2018en_US
dc.identifier.isbn9781538692769-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30835-
dc.description.abstractAnt colony optimization (ACO) algorithms have proved to be powerful tools to solve difficult optimization problems. In this paper, ACO is applied to the electric vehicle routing problem (EVRP). New challenges arise with the consideration of electric vehicles instead of conventional vehicles because their energy level is affected by several uncertain factors. Therefore, a feasible route of an electric vehicle (EV) has to consider visit(s) to recharging station(s) during its daily operation (if needed). A look ahead strategy is incorporated into the proposed ACO for EVRP (ACO-EVRP) that estimates whether at any time EVs have within their range a recharging station. From the simulation results on several benchmark problems it is shown that the proposed ACO-EVRP approach is able to output feasible routes, in terms of energy, for a fleet of EVs.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectAnt colony optimizationen_US
dc.subjectelectric vehicleen_US
dc.subjectvehicle routing problemen_US
dc.titleAnt Colony optimization for the Electric Vehicle Routing Problemen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceProceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018en_US
dc.identifier.doi10.1109/SSCI.2018.8628831en_US
dc.identifier.scopus2-s2.0-85062776430en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85062776430en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2018-2019en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

32
checked on Mar 14, 2024

Page view(s)

116
Last Week
1
Last month
2
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.