Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30834
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorEllinas, Georgios-
dc.contributor.authorPolycarpou, Marios M.-
dc.date.accessioned2023-11-22T09:54:16Z-
dc.date.available2023-11-22T09:54:16Z-
dc.date.issued2019-06-01-
dc.identifier.citation2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10 - 13 June 2019en_US
dc.identifier.isbn9781728121536-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30834-
dc.description.abstractIn this work we consider the scheduling problem for charging a fleet of electric vehicles (EVs) within a station such that the total tardiness of the problem is minimized. The generation of a feasible and efficient schedule is a difficult task due to the physical and power constraints of the charging station, i.e., the maximum contracted power and the maximum power imbalance between the lines of the electric feeder. The ant colony optimization (ACO) metaheuristic is applied to coordinate the charging process of the EVs within the charging station by generating efficient schedules. The behaviour and performance of ACO is analyzed and compared against state-of-the-art approaches on a benchmark set inspired by real-world scenarios. The experimental results show that the application of ACO is highly effective and outperforms other approaches.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectant colony optimizationen_US
dc.subjectElectric vehiclesen_US
dc.subjectschedulingen_US
dc.titleElectric Vehicle Charging Scheduling Using Ant Colony Systemen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedingsen_US
dc.identifier.doi10.1109/CEC.2019.8789989en_US
dc.identifier.scopus2-s2.0-85071298434en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85071298434en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

22
checked on Mar 14, 2024

Page view(s)

124
Last Week
1
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.