Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30830
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorLi, Changhe-
dc.contributor.authorEllinas, Georgios-
dc.contributor.authorPolycarpou, Marios M.-
dc.date.accessioned2023-11-21T10:40:07Z-
dc.date.available2023-11-21T10:40:07Z-
dc.date.issued2019-12-06-
dc.identifier.citation2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019, Xiamen, China, 6 - 9 December 2019en_US
dc.identifier.isbn9781728124858-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30830-
dc.description.abstractParallelizing metaheuristics has become a common practice considering the computation power and resources available nowadays. The aim of parallelizing a metaheuristic is either to increase the quality of the generated output, given a fixed computation time, or to reduce the required time in generating an output. In this work, we parallelize one of the best-performing ant colony optimization (ACO) algorithms and apply it to the electric vehicle routing problem (EVRP). EVRP is more challenging than the conventional vehicle routing problem, as with the consideration of electric vehicles additional hard constraints arise within the EVRP due to their limited driving range (e.g., the consideration whether electric vehicles need to visit a charging station during their daily operation). The proposed parallel ACO algorithm with several colonies also uses a migration policy to allow communication between the different colonies. From the simulation studies it is shown that parallelizing ACO algorithms, both with and without a migration policy, is highly effective.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectAnt colony optimizationen_US
dc.subjectelectric vehicleen_US
dc.subjectvehicle routing problemen_US
dc.titleParallel Ant Colony Optimization for the Electric Vehicle Routing Problemen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationChina University of Geosciencesen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.countryChinaen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019en_US
dc.identifier.doi10.1109/SSCI44817.2019.9003153en_US
dc.identifier.scopus2-s2.0-85080900090en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85080900090en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2019-2020en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

14
checked on Mar 14, 2024

Page view(s) 20

102
Last Week
2
Last month
4
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.