Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30827
DC FieldValueLanguage
dc.contributor.authorXiao, Long-
dc.contributor.authorLi, Changhe-
dc.contributor.authorWang, Junchen-
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.contributor.authorDan, Xiaorong-
dc.date.accessioned2023-11-20T12:22:04Z-
dc.date.available2023-11-20T12:22:04Z-
dc.date.issued2020-02-15-
dc.identifier.citation12th International Conference on Machine Learning and Computing, ICMLC 2020, Shenzhen, China, 15 - 17 February 2020en_US
dc.identifier.isbn9781450376426-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30827-
dc.description.abstractThe study of the vehicle routing problem (VRP) is of outstanding significance for reducing logistics costs. Currently, there is little VRP considering real-time traffic conditions. In this paper, we propose a more realistic and challenging multi-objective VRP containing real-time traffic conditions. Besides, we also offer an adaptive local search algorithm combined with a dynamic constrained multi-objective evolutionary framework. In the algorithm, we design eight local search operators and select them adaptively to optimize the initial solutions. Experimental results show that our algorithm can obtain an excellent solution that satisfies the constraints of the vehicle routing problem with real-time traffic conditions.en_US
dc.language.isoenen_US
dc.rights© ACMen_US
dc.subjectConstrained Optimizationen_US
dc.subjectLocal Searchen_US
dc.subjectMulti-objective Optimizationen_US
dc.subjectVehicle Routing Problemen_US
dc.titleModeling and Evolutionary Optimization for Multi-objective Vehicle Routing Problem with Real-time Traffic Conditionsen_US
dc.typeConference Papersen_US
dc.collaborationChina University of Geosciencesen_US
dc.collaborationDe Montfort Universityen_US
dc.collaborationInstitute Wuhan Nanruien_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.countryUnited Kingdomen_US
dc.countryChinaen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceACM International Conference Proceeding Seriesen_US
dc.identifier.doi10.1145/3383972.3384041en_US
dc.identifier.scopus2-s2.0-85085915505en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85085915505en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2020-2021en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

1
checked on Mar 14, 2024

Page view(s)

101
Last Week
1
Last month
4
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.