Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/30821
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bonilha, Iaê S. | - |
dc.contributor.author | Mavrovouniotis, Michalis | - |
dc.contributor.author | Müller, Felipe M. | - |
dc.contributor.author | Ellinas, Georgios | - |
dc.contributor.author | Polycarpou, Marios M. | - |
dc.date.accessioned | 2023-11-20T10:17:37Z | - |
dc.date.available | 2023-11-20T10:17:37Z | - |
dc.date.issued | 2020-12-01 | - |
dc.identifier.citation | 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020Virtual, Canberra, Australia, 1 - 4 December 2020 | en_US |
dc.identifier.isbn | 9781728125473 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/30821 | - |
dc.description.abstract | Ant colony optimization (ACO) algorithms have proved to be suitable for solving dynamic optimization problems. The intrinsic characteristics of ACO algorithms enables them to transfer knowledge from past optimized environments via their pheromone trails to shorten the optimization process in the current environment. In this work, change-related information is also utilized when a dynamic change occurs. The dynamic vehicle routing problem is addressed where nodes are removed, representing customers that have already been visited, or added, representing customers that placed a new order and need to be visited. These change-related information are used to heuristically repair the solution of the previous environment, based on effective moves of the unstringing and stringing operator. Experimental results show that utilizing change-related information is beneficial in the generated dynamic test cases. | en_US |
dc.language.iso | en | en_US |
dc.rights | © IEEE | en_US |
dc.subject | Ant colony optimization | en_US |
dc.subject | dynamic vehicle routing problem | en_US |
dc.subject | heuristic repair | en_US |
dc.title | Ant Colony optimization with Heuristic Repair for the Dynamic Vehicle Routing Problem | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Federal University of Santa Maria | en_US |
dc.collaboration | University of Cyprus | en_US |
dc.collaboration | Federal University of Santa Maria | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.country | Brazil | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.relation.conference | 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 | en_US |
dc.identifier.doi | 10.1109/SSCI47803.2020.9308156 | en_US |
dc.identifier.scopus | 2-s2.0-85099691984 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85099691984 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
cut.common.academicyear | 2019-2020 | en_US |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | conferenceObject | - |
crisitem.author.orcid | 0000-0002-5281-4175 | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
20
7
checked on Mar 14, 2024
Page view(s)
114
Last Week
1
1
Last month
5
5
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.