Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30821
DC FieldValueLanguage
dc.contributor.authorBonilha, Iaê S.-
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorMüller, Felipe M.-
dc.contributor.authorEllinas, Georgios-
dc.contributor.authorPolycarpou, Marios M.-
dc.date.accessioned2023-11-20T10:17:37Z-
dc.date.available2023-11-20T10:17:37Z-
dc.date.issued2020-12-01-
dc.identifier.citation2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020Virtual, Canberra, Australia, 1 - 4 December 2020en_US
dc.identifier.isbn9781728125473-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30821-
dc.description.abstractAnt colony optimization (ACO) algorithms have proved to be suitable for solving dynamic optimization problems. The intrinsic characteristics of ACO algorithms enables them to transfer knowledge from past optimized environments via their pheromone trails to shorten the optimization process in the current environment. In this work, change-related information is also utilized when a dynamic change occurs. The dynamic vehicle routing problem is addressed where nodes are removed, representing customers that have already been visited, or added, representing customers that placed a new order and need to be visited. These change-related information are used to heuristically repair the solution of the previous environment, based on effective moves of the unstringing and stringing operator. Experimental results show that utilizing change-related information is beneficial in the generated dynamic test cases.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectAnt colony optimizationen_US
dc.subjectdynamic vehicle routing problemen_US
dc.subjectheuristic repairen_US
dc.titleAnt Colony optimization with Heuristic Repair for the Dynamic Vehicle Routing Problemen_US
dc.typeConference Papersen_US
dc.collaborationFederal University of Santa Mariaen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationFederal University of Santa Mariaen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryBrazilen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020en_US
dc.identifier.doi10.1109/SSCI47803.2020.9308156en_US
dc.identifier.scopus2-s2.0-85099691984en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85099691984en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

7
checked on Mar 14, 2024

Page view(s)

114
Last Week
1
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.