Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30820
DC FieldValueLanguage
dc.contributor.authorChen, Baojian-
dc.contributor.authorLi, Changhe-
dc.contributor.authorZeng, Sanyou-
dc.contributor.authorYang, Shengxiang-
dc.contributor.authorMavrovouniotis, Michalis-
dc.date.accessioned2023-11-20T09:39:59Z-
dc.date.available2023-11-20T09:39:59Z-
dc.date.issued2021-12-05-
dc.identifier.citation2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021, Orlando, Florida, 5 - 7 December 2021en_US
dc.identifier.isbn9781728190488-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30820-
dc.description.abstractThe research of vehicle routing problem (VRP) is significant for people traveling and logistics distribution. Recently, in order to alleviate global warming, the VRP based on electric vehicles has attracted much attention from researchers. In this paper, a bi-level routing problem model based on electric vehicles is presented, which can simulate the actual logistics distribution process. The classic backpropagation neural network is used to predict the road conditions for applying the method in real life. We also propose a local search algorithm based on a dynamic constrained multiobjective optimization framework. In this algorithm, 26 local search operators are designed and selected adaptively to optimize initial solutions. We also make a comparison between our algorithm and 3 modified algorithms. Experimental results indicate that our algorithm can attain an excellent solution that can satisfy the constraints of the VRP with real-time traffic conditions and be more competitive than the other 3 modified algorithms.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectBi-Ievel routing problemen_US
dc.subjectConstrained optimizationen_US
dc.subjectLocal searchen_US
dc.subjectMulti-objective optimizationen_US
dc.titleAn Adaptive Evolutionary Algorithm for Bi- Level Multi-objective VRPs with Real-Time Traffic Conditionsen_US
dc.typeConference Papersen_US
dc.collaborationUnivsersity of Geosciencesen_US
dc.collaborationChina University of Geosciencesen_US
dc.collaborationDe Montfort Universityen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.countryUnited Kingdomen_US
dc.countryChinaen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conference2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedingsen_US
dc.identifier.doi10.1109/SSCI50451.2021.9659933en_US
dc.identifier.scopus2-s2.0-85125802499en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85125802499en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2020-2021en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s)

100
Last Week
0
Last month
0
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.