Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30819
DC FieldValueLanguage
dc.contributor.authorLi, Changhe-
dc.contributor.authorYang, Ruixia-
dc.contributor.authorZhou, Lin-
dc.contributor.authorZeng, Sanyou-
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Ming-
dc.contributor.authorYang, Shengxiang-
dc.contributor.authorWu, Min-
dc.date.accessioned2023-11-20T09:20:55Z-
dc.date.available2023-11-20T09:20:55Z-
dc.date.issued2021-05-01-
dc.identifier.citationJournal of Water Resources Planning and Management, 2021, vol. 147, iss. 5en_US
dc.identifier.issn07339496-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30819-
dc.description.abstractReal-time monitoring of drinking water in a water distribution system (WDS) can effectively warn of and reduce safety risks. One of the challenges is to identify the contamination source through these observed data due to the real-time, nonuniqueness, and large-scale characteristics. To address the real-time and nonuniqueness challenges, we propose an adaptive multipopulation evolutionary optimization algorithm to determine the real-time characteristics of contamination sources, where each population aims to locate and track a different global optimum. The algorithm adaptively adjusts the number of populations using a feedback learning mechanism. To effectively locate an optimal solution for a population, a coevolutionary strategy is used to identify the location and the injection profile separately. Experimental results from three WDS networks show that the proposed algorithm is competitive in comparison with three other state-of-the-art evolutionary algorithms.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Water Resources Planning and Managementen_US
dc.rights© American Society of Civil Engineersen_US
dc.subjectContamination source identificationen_US
dc.subjectDynamic bilevel optimizationen_US
dc.subjectEvolutionary computationen_US
dc.subjectMultipopulation adaptationen_US
dc.titleAdaptive Multipopulation Evolutionary Algorithm for Contamination Source Identification in Water Distribution Systemsen_US
dc.typeArticleen_US
dc.collaborationChina University of Geosciencesen_US
dc.collaborationHubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systemsen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryChinaen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1061/(ASCE)WR.1943-5452.0001362en_US
dc.identifier.scopus2-s2.0-85101611635en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85101611635en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue5en_US
dc.relation.volume147en_US
cut.common.academicyear2020-2021en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

3
checked on Mar 14, 2024

Page view(s) 20

109
Last Week
0
Last month
2
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.