Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30793
DC FieldValueLanguage
dc.contributor.authorKotarela, Faidra-
dc.contributor.authorKyritsis, Anastasios Ch.-
dc.contributor.authorAgathokleous, Rafaela-
dc.contributor.authorPapanikolaou, Nick P.-
dc.date.accessioned2023-11-14T12:16:02Z-
dc.date.available2023-11-14T12:16:02Z-
dc.date.issued2023-05-15-
dc.identifier.citationEnergy, 2023, vol. 271en_US
dc.identifier.issn03605442-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30793-
dc.description.abstractTo achieve the Paris Agreement 1.5 °C target, apart from the obligation for new buildings to be ZEBs, the existing building stock should be retrofitted as well, in order to improve their energy efficiency by using more efficient electromechanical energy systems and envelope materials, whereas RES should cover their energy needs. In this context, Energy Performance Certificates (EPCs) have been institutionalized to certify the energy behavior of buildings. Various types of buildings energy modeling tools and calculation methods have been proposed for EPCs procedures. This study focuses on the energy performance gap between dynamic and quasi steady-state simulation tools. The results from a comparative case study have shown remarkable discrepancies between dynamic and quasi-steady-state simulation processes, for the same building. Indeed, the quasi-steady-state simulation tool estimates 4.5% higher annual electricity consumption per conditioned area for the existing building and approximately 74% less energy savings for the retrofitted one, leading to an overestimation of 85% in CO2 emissions prediction. Finally, compared to the analysis with the dynamic simulation tool, an increased retrofit cost, approximately by 19.7% (and thus 3 times higher payback period), is needed according to the results of the quasi-steady-state simulation tool, in order to achieve the same Energy classification.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergyen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBuilding energy consumptionen_US
dc.subjectBuilding retrofiten_US
dc.subjectBuilding simulation toolsen_US
dc.subjectEnergy performance certificatesen_US
dc.subjectEnergy saving potentiaen_US
dc.subjectRenewable energy sourcesen_US
dc.titleOn the exploitation of dynamic simulations for the design of buildings energy systemsen_US
dc.typeArticleen_US
dc.collaborationDemocritus University of Thraceen_US
dc.collaborationIonian Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.energy.2023.127002en_US
dc.identifier.scopus2-s2.0-85148675266-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85148675266-
dc.relation.volume271en_US
cut.common.academicyear2022-2023en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn0360-5442-
crisitem.journal.publisherElsevier-
crisitem.author.orcid0000-0003-2908-7595-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

5
checked on Mar 14, 2024

Page view(s) 20

149
Last Week
2
Last month
5
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons