Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30748
DC FieldValueLanguage
dc.contributor.authorZempila, Melina Maria-
dc.contributor.authorTaylor, Michael-
dc.contributor.authorKoukouli, Maria Elissavet-
dc.contributor.authorLerot, Christophe-
dc.contributor.authorFragkos, Konstantinos-
dc.contributor.authorFountoulakis, Ilias-
dc.contributor.authorBais, Alkiviadis F.-
dc.contributor.authorBalis, Dimitrios-
dc.contributor.authorvan Roozendael, Michel-
dc.date.accessioned2023-11-07T10:20:34Z-
dc.date.available2023-11-07T10:20:34Z-
dc.date.issued2017-07-15-
dc.identifier.citationScience of the Total Environment, 2017, vol. 590-591, pp. 92 - 106en_US
dc.identifier.issn00489697-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30748-
dc.description.abstractThis study aims to construct and validate a neural network (NN) model for the production of high frequency (~ 1 min) ground-based estimates of total ozone column (TOC) at a mid-latitude UV and ozone monitoring station in the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki (LAP/AUTh) for the years 2005–2014. In the first stage of model development, ~ 30,000 records of coincident solar UV spectral irradiance measurements from a Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer and TOC measurements from a co-located Brewer spectroradiometer are used to train a NN to learn the nonlinear functional relation between the irradiances and TOC. The model is then subjected to sensitivity analysis and validation. Close agreement is obtained (R2 = 0.94, RMSE = 8.21 DU and bias = − 0.15 DU relative to the Brewer) for the training data in the correlation of NN estimates on Brewer derived TOC with 95% of the coincident data differing by less than 13 DU. In the second stage of development, a long time series (≥ 1 million records) of high frequency (~ 1 min) NILU-UV ground-based measurements are presented as inputs to the NN model to generate high frequency TOC estimates. The advantage of the NN model is that it is not site dependent and is applicable to any NILU input data lying within the range of the training data. GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME2/MetOp-A TOC records are then used to perform a precise cross-validation analysis and comparison with the NILU TOC estimates over Thessaloniki. All 4 satellite TOC dataset are retrieved using the GOME Direct Fitting algorithm, version 3 (GODFIT_v3), for reasons of consistency. The NILU TOC estimates within ± 30 min of the overpass times agree well with the satellite TOC retrievals with coefficient of determination in the range 0.88 ≤ R2 ≤ 0.90 for all sky conditions and 0.95 ≤ R2 ≤ 0.96 for clear sky conditions. The mean fractional differences are found to be − 0.67% ± 2.15%, − 1.44% ± 2.25%, − 2.09% ± 2.06% and − 0.85% ± 2.19% for GOME, SCIAMACHY, OMI and GOME2 respectively for the clear sky cases. The near constant standard deviation (~±2.2%) across the array of sensors testifies directly to the stability of both the GODFIT_v3 algorithm and the NN model for providing coherent and robust TOC records. Furthermore, the high Pearson product moment correlation coefficients (0.94 < R < 0.98) testify to the strength of the linear relationship between the satellite algorithm retrievals of TOC and ground-based estimates, while biases of less than 5 DU suggest that systematic errors are low. This novel methodology contributes to the ongoing assessment of the quality and consistency of ground and space-based measurements of total ozone columns.en_US
dc.language.isoenen_US
dc.relation.ispartofScience of the Total Environmenten_US
dc.rights© Elsevieren_US
dc.subjectBrewer spectrophotometeren_US
dc.subjectGOME/ERS-2en_US
dc.subjectGOME2/MetOpAen_US
dc.subjectNeural networken_US
dc.subjectNILU-UV multi-filter radiometeren_US
dc.subjectOMI/Auraen_US
dc.subjectSCIAMACHY/Envisaten_US
dc.subjectTotal ozone columnen_US
dc.titleNILU-UV multi-filter radiometer total ozone columns: Comparison with satellite observations over Thessaloniki, Greeceen_US
dc.typeArticleen_US
dc.collaborationColorado State Universityen_US
dc.collaborationAristotle University of Thessalonikien_US
dc.collaborationBelgian Institute for Space Aeronomyen_US
dc.subject.categoryNATURAL SCIENCESen_US
dc.subject.categoryENGINEERING AND TECHNOLOGYen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.countryGreeceen_US
dc.countryBelgiumen_US
dc.subject.fieldNatural Sciencesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.scitotenv.2017.02.174en_US
dc.identifier.pmid28259430en
dc.identifier.scopus2-s2.0-85014100277en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85014100277en
dc.contributor.orcid0000-0002-9605-0330en
dc.contributor.orcid0000-0002-3473-3478en
dc.contributor.orcid0000-0002-7509-4027en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid0000-0002-3009-2407en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid0000-0003-3899-2001en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.volume590-591en_US
cut.common.academicyear2017-2018en_US
dc.identifier.spage92en_US
dc.identifier.epage106en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0048-9697-
crisitem.journal.publisherElsevier-
crisitem.author.orcid0000-0002-3009-2407-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

2
checked on Feb 2, 2024

Page view(s) 20

107
Last Week
0
Last month
5
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.