Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30601
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorLiapi, Georgia D.-
dc.contributor.authorGemenaris, Michalis-
dc.contributor.authorLoizou, Christos P.-
dc.contributor.authorKyriacou, Efthyvoulos C.-
dc.contributor.authorConstatninou, Kyriacos P.-
dc.contributor.authorNicolaides, Andrew N.-
dc.date.accessioned2023-10-06T09:52:09Z-
dc.date.available2023-10-06T09:52:09Z-
dc.date.issued2023-06-11-
dc.identifier.citation24th International Conference on Digital Signal Processing, DSP 2023, Rhodes, Greece, 11 - 13 June 2023en_US
dc.identifier.isbn9798350339598-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30601-
dc.description.abstractThe automated and reliable delineation of atherosclerotic carotid plaques in ultrasound (CUS) videos is of significant clinical relevance for management of the disease and the prediction of future stroke events. To facilitate stroke risk assessment, in this study, we propose an integrated software system for the automated segmentation and classification of atherosclerotic carotid plaques in longitudinal CUS videos, which was evaluated using 10 CUS videos, from 10 patients (5 Asymptomatic, AS, and 5 Symptomatic, SY). The proposed methodology involves the following steps: a) CUS video frame (VF) resolution and intensity normalization, b) speckle reduction filtering, c) Motion-mode state-based cardiac cycle (CC) identification, d) deep learning (DL)-based plaque segmentation, e) extraction and selection of plaque region of interest (ROI)-specific textural features, and f) machine learning (ML)-based plaque classification. Initially, one CC (cardiac diastole-systole-diastole) was selected per CUS video, and the CC's consecutive VFs were identified and reduced in number to exclude redundant VFs. All standardized VFs per patient were extracted, cropped and resized to mainly accommodate the ROI and were fed into a priorly trained and evaluated 2-dimensional DL plaque segmentation model. For each VF, the DL-based segmented plaque ROI was projected onto its primary resolution-normalized VF counterpart, from which textural and amplitude modulation-frequency modulation (AM-FM) plaque ROI features were extracted. Statistical analysis on the total AS and SY VFs was used for feature selection. We identified 2 plaque-originating AM-FM features, which exhibited statistically significant differences between the AS and SY standardized VFs (p<0.05), followed by 3 textural features (p<0.05). To finalize our system, in a future study, the strong AM-FM AS/SY descriptors, identified here, will be evaluated alone or in combinations with other plaque-descriptive features, in machine learning (ML)-based plaque classification, using a larger CUS video sample.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Conference on Digital Signal Processingen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCarotid Video Ultrasounden_US
dc.subjectClassificationen_US
dc.subjectDeep learningen_US
dc.subjectInstantaneous Phaseen_US
dc.subjectPlaqueen_US
dc.subjectSegmentationen_US
dc.titleAutomated segmentation and classification of the atherosclerotic carotid plaque in ultrasound videosen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationVascular Screening and Diagnostic Centreen_US
dc.subject.categoryMechanical Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.identifier.doi10.1109/DSP58604.2023.10167885en_US
dc.identifier.scopus2-s2.0-85165495024-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85165495024-
cut.common.academicyear2022-2023en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1247-8573-
crisitem.author.orcid0000-0002-4589-519X-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

1
checked on 14 Μαρ 2024

Page view(s) 50

213
Last Week
6
Last month
34
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons