Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30486
DC FieldValueLanguage
dc.contributor.authorKaragiannopoulos, Stavros-
dc.contributor.authorDobbe, Roel-
dc.contributor.authorAristidou, Petros-
dc.contributor.authorCallaway, Duncan-
dc.contributor.authorHug, Gabriela-
dc.date.accessioned2023-09-22T09:45:10Z-
dc.date.available2023-09-22T09:45:10Z-
dc.date.issued2019-06-01-
dc.identifier.citation019 IEEE Milan PowerTech, PowerTech 2019, Milan, Italy, 23 - 27 June 2019en_US
dc.identifier.isbn9781538647226-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30486-
dc.description.abstractToday, system operators rely on local control of distributed energy resources (DERs), such as photovoltaic units, wind turbines and batteries, to increase operational flexibility. These schemes offer a communication-free, robust, cheap, but rather sub-optimal solution and do not fully exploit the DER capabilities. The operational flexibility of active distribution networks can be greatly enhanced by the optimal control of DERs. However, it usually requires remote monitoring and communication infrastructure, which current distribution networks lack due to the high cost and complexity. In this paper, we investigate data-driven control algorithms that use historical data, advanced off-line optimization techniques, and machine learning methods, to design local controls that emulate the optimal behavior without the use of any communication. We elaborate on the suitability of various schemes based on different local features, we investigate safety challenges arising from data-driven control schemes, and we show the performance of the optimized local controls on a three-phase, unbalanced, low-voltage, distribution network.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectActive distribution networksen_US
dc.subjectData-driven control designen_US
dc.subjectMachine learningen_US
dc.subjectOPFen_US
dc.subjectOptimal controlen_US
dc.titleData-driven control design schemes in active distribution grids: Capabilities and challengesen_US
dc.typeConference Papersen_US
dc.collaborationEth, Eeh - Power Systems Laboratoryen_US
dc.collaborationUC Berkeleyen_US
dc.collaborationUniversity of Leedsen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countrySwitzerlanden_US
dc.countryUnited Statesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.relation.conference2019 IEEE Milan PowerTech, PowerTech 2019en_US
dc.identifier.doi10.1109/PTC.2019.8810586en_US
dc.identifier.scopus2-s2.0-85072318734-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85072318734-
cut.common.academicyearemptyen_US
item.openairetypeconferenceObject-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4429-0225-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

14
checked on Mar 14, 2024

Page view(s)

124
Last Week
0
Last month
7
checked on Dec 4, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons