Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/30408
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Melillos, George | - |
dc.contributor.author | Hadjimitsis, Diofantos G. | - |
dc.contributor.editor | Palaniappan, Kannappan | - |
dc.contributor.editor | Seetharaman, Gunasekaran | - |
dc.contributor.editor | Harguess, Joshua D. | - |
dc.date.accessioned | 2023-09-15T09:21:41Z | - |
dc.date.available | 2023-09-15T09:21:41Z | - |
dc.date.issued | 2022-06-06 | - |
dc.identifier.citation | Geospatial Informatics XII 2022Virtual, Online, 6 - 12 June 2022 | en_US |
dc.identifier.isbn | 9781510650749 | - |
dc.identifier.issn | 0277786X | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/30408 | - |
dc.description.abstract | This paper proposes an automatic ship detection approach in Synthetic Aperture Radar (SAR) Images using YOLO deep learning framework. The You Only Look Once (YOLO) model was initially introduced as the first object detection model that combined bounding box prediction and objects classification into a single end-to-end differentiable network. We train the YOLO model on our dataset in this paper for our detector to learn to detect objects in SAR images such as ships. YOLO test results showed an increase in the accuracy of ship detection at Cyprus's Coast and can be applied in the field of ship detection. | en_US |
dc.language.iso | en | en_US |
dc.rights | © SPIE | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Cyprus | en_US |
dc.subject | Ship detection | en_US |
dc.subject | synthetic aperture radar (SAR) images | en_US |
dc.subject | You Only Look Once (YOLO) | en_US |
dc.title | Ship detection using sar images based on yolo at Cyprus’s coast | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | ERATOSTHENES Centre of Excellence | en_US |
dc.subject.category | Civil Engineering | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.relation.conference | Proceedings of SPIE - The International Society for Optical Engineering | en_US |
dc.identifier.doi | 10.1117/12.2614526 | en_US |
dc.identifier.scopus | 2-s2.0-85136136672 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85136136672 | - |
dc.relation.volume | 12099 | en_US |
cut.common.academicyear | 2021-2022 | en_US |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-8292-1836 | - |
crisitem.author.orcid | 0000-0002-2684-547X | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons