Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30085
DC FieldValueLanguage
dc.contributor.authorJoyal-Desmarais, Keven-
dc.contributor.authorStojanovic, Jovana-
dc.contributor.authorKennedy, Eric B-
dc.contributor.authorEnticott, Joanne C-
dc.contributor.authorBoucher, Vincent Gosselin-
dc.contributor.authorVo, Hung-
dc.contributor.authorKošir, Urška-
dc.contributor.authorLavoie, Kim L.-
dc.contributor.authorBacon, Simon L.-
dc.date.accessioned2023-08-30T09:40:12Z-
dc.date.available2023-08-30T09:40:12Z-
dc.date.issued2022-12-
dc.identifier.citationEuropean Journal of Epidemiology,2022, vol. 37, iss. 12, pp. 1233 - 1250en_US
dc.identifier.issn03932990-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30085-
dc.description.abstractCOVID-19 research has relied heavily on convenience-based samples, which-though often necessary-are susceptible to important sampling biases. We begin with a theoretical overview and introduction to the dynamics that underlie sampling bias. We then empirically examine sampling bias in online COVID-19 surveys and evaluate the degree to which common statistical adjustments for demographic covariates successfully attenuate such bias. This registered study analysed responses to identical questions from three convenience and three largely representative samples (total N = 13,731) collected online in Canada within the International COVID-19 Awareness and Responses Evaluation Study ( www.icarestudy.com ). We compared samples on 11 behavioural and psychological outcomes (e.g., adherence to COVID-19 prevention measures, vaccine intentions) across three time points and employed multiverse-style analyses to examine how 512 combinations of demographic covariates (e.g., sex, age, education, income, ethnicity) impacted sampling discrepancies on these outcomes. Significant discrepancies emerged between samples on 73% of outcomes. Participants in the convenience samples held more positive thoughts towards and engaged in more COVID-19 prevention behaviours. Covariates attenuated sampling differences in only 55% of cases and increased differences in 45%. No covariate performed reliably well. Our results suggest that online convenience samples may display more positive dispositions towards COVID-19 prevention behaviours being studied than would samples drawn using more representative means. Adjusting results for demographic covariates frequently increased rather than decreased bias, suggesting that researchers should be cautious when interpreting adjusted findings. Using multiverse-style analyses as extended sensitivity analyses is recommended.en_US
dc.language.isoenen_US
dc.relation.ispartofEuropean Journal of Epidemiologyen_US
dc.rights© Springer Natureen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCollider biasen_US
dc.subjectCovariate adjustmenten_US
dc.subjectCOVID-19en_US
dc.subjectMultiverse analysisen_US
dc.subjectSampling biasen_US
dc.titleHow well do covariates perform when adjusting for sampling bias in online COVID-19 research? Insights from multiverse analysesen_US
dc.typeArticleen_US
dc.collaborationConcordia Universityen_US
dc.collaborationMontreal Behavioural Medicine Centreen_US
dc.collaborationCanadian Agency for Drugs and Technologies in Healthen_US
dc.collaborationYork University - Canadaen_US
dc.collaborationMonash Universityen_US
dc.collaborationAdvanced Health Research and Translation Centreen_US
dc.collaborationUniversity of British Columbiaen_US
dc.collaborationUniversité du Québec à Montréalen_US
dc.subject.categoryHealth Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCanadaen_US
dc.countryAustraliaen_US
dc.subject.fieldMedical and Health Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/s10654-022-00932-yen_US
dc.identifier.pmid36335560-
dc.identifier.scopus2-s2.0-85141539697-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85141539697-
dc.relation.issue12en_US
dc.relation.volume37en_US
cut.common.academicyear2022-2023en_US
dc.identifier.spage1233en_US
dc.identifier.epage1250en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1573-7284-
crisitem.journal.publisherSpringer Nature-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

7
checked on Dec 22, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 1, 2023

Page view(s)

129
Last Week
1
Last month
4
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons