Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/30046
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prentzas, Nicoletta | - |
dc.contributor.author | Nicolaides, Andrew N. | - |
dc.contributor.author | Kyriacou, Efthyvoulos C. | - |
dc.contributor.author | Kakas, Antonis | - |
dc.contributor.author | Pattichis, Constantinos S. | - |
dc.date.accessioned | 2023-08-03T08:42:48Z | - |
dc.date.available | 2023-08-03T08:42:48Z | - |
dc.date.issued | 2019-10-28 | - |
dc.identifier.citation | 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, Athens,28 - 30 October 2019 | en_US |
dc.identifier.isbn | 9781728146171 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/30046 | - |
dc.description.abstract | Despite the recent recognition of the value of Artificial Intelligence and Machine Learning in healthcare, barriers to further adoption remain, mainly due to their 'black box' nature and the algorithm's inability to explain its results. In this paper we present and propose a methodology of applying argumentation on top of machine learning to build explainable AI (XAI) models. We compare our results with Random Forests and an SVM classifier that was considered best for the same dataset in [1]. | en_US |
dc.language.iso | en | en_US |
dc.rights | © IEEE | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Argumentation | en_US |
dc.subject | Explainability | en_US |
dc.subject | InTrees | en_US |
dc.subject | Random forests | en_US |
dc.subject | XAI | en_US |
dc.title | Integrating machine learning with symbolic reasoning to build an explainable ai model for stroke prediction | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | University of Cyprus | en_US |
dc.collaboration | Frederick University | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.relation.conference | Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019 | en_US |
dc.identifier.doi | 10.1109/BIBE.2019.00152 | en_US |
dc.identifier.scopus | 2-s2.0-85078574032 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85078574032 | - |
cut.common.academicyear | 2019-2020 | en_US |
dc.identifier.spage | 817 | en_US |
dc.identifier.epage | 821 | en_US |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4589-519X | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
This item is licensed under a Creative Commons License