Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29767
DC FieldValueLanguage
dc.contributor.authorDaskalakis, Vangelis-
dc.date.accessioned2023-07-11T07:52:21Z-
dc.date.available2023-07-11T07:52:21Z-
dc.date.issued2022-11-23-
dc.identifier.citationACS Physical Chemistry Au, 2022, vol. 2, iss. 6, pp. 496 - 505en_US
dc.identifier.issn26942445-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29767-
dc.description.abstractMarkov state models (MSMs) and machine learning (ML) algorithms can extrapolate the long-time-scale behavior of large biomolecules from molecular dynamics (MD) trajectories. In this study, an MD-MSM-ML scheme has been applied to probe the large endonuclease (Cas9) in the bacterial adaptive immunity CRISPR-Cas9 system. CRISPR has become a programmable and state-of-the-art powerful genome editing tool that has already revolutionized life sciences. CRISPR-Cas9 is programmed to process specific DNA sequences in the genome. However, human/biomedical applications are compromised by off-target DNA damage. Characterization of Cas9 at the structural and biophysical levels is a prerequisite for the development of efficient and high-fidelity Cas9 variants. The Cas9 wild type and two variants (R63A-R66A-R70A, R69A-R71A-R74A-R78A) are studied herein. The configurational space of Cas9 is provided with a focus on the conformations of the side chains of two residues (Gln768 and Arg976). A model for the synergy between those two residues is proposed. The results are discussed within the context of experimental literature. The results and methodology can be exploited for the study of large biomolecules in general and for the engineering of more efficient and safer Cas9 variants for applications.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© The Authoren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCRISPR-Cas9en_US
dc.subjectmachine learningen_US
dc.subjectMarkov state modelen_US
dc.subjectmolecular dynamicsen_US
dc.subjectmutantsen_US
dc.titleDeciphering the QR Code of the CRISPR-Cas9 System: Synergy between Gln768 (Q) and Arg976 (R)en_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1021/acsphyschemau.2c00041en_US
dc.identifier.pmid36855610-
dc.identifier.scopus2-s2.0-85146081102-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85146081102-
dc.relation.issue6en_US
dc.relation.volume2en_US
cut.common.academicyear2022-2023en_US
dc.identifier.spage496en_US
dc.identifier.epage505en_US
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0001-8870-0850-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
daskalakis 1.pdfFull text5.83 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Feb 2, 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
checked on Oct 29, 2023

Page view(s)

141
Last Week
0
Last month
5
checked on Nov 6, 2024

Download(s)

80
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons