Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29712
DC FieldValueLanguage
dc.contributor.authorSamanides, Charis G.-
dc.contributor.authorVyrides, Ioannis-
dc.date.accessioned2023-07-06T10:55:53Z-
dc.date.available2023-07-06T10:55:53Z-
dc.date.issued2023-02-01-
dc.identifier.citationBiochemical Engineering Journal, 2023, vol.191en_US
dc.identifier.issn1369703X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29712-
dc.description.abstractPlatform chemicals (VFAs) production through CO2 utilization technologies plays a crucial role in international efforts for climate change mitigation. In this study, a new approach for sustainable and eco-friendly CO2 bioconversion to acetic acid proposed using 4 g L−1 magnesium ribbon (Mg0) in-situ and homoacetogen-enriched anaerobic granular sludge. To suppress methanogenesis three inhibition strategies were investigated. The use of NaCl (50, 70, 90 g L−1), 2-bromoethanesulfonate (4 mM BES), and a short heat-shock pre-treatment were applied to anaerobic granular sludge. The most effective strategy for methanogenesis inhibition and acetic acid production was the thermal treatment producing 2023,07 mg L−1 of acetic acid after 32 days (Cycle 7) with a maximum production rate of 234,58 mg L−1 day−1 at cycle 3 (after 14 days). Following the system with BES producing 1369,45 mg L−1 of acetic acid with a maximum production rate of 111,76 mg L−1 day−1 at cycle 3. The systems exposed to NaCl generated fewer VFAs compared to the other two systems (BES, Heat-shock). After the third cycle and until the end of the experiment (cycle 7), at the two systems (BES, Heat-shock), the acetic acid production rate slightly increased, whereas the methane significantly increased. At the end of cycle 7, the hydrogenotrophic methanogens Methanolinea was found in a high relative abundance and hydrogenotrophic methanogens acted antagonistically towards homoacetogens.en_US
dc.language.isoenen_US
dc.rights© Elsevier B.V.en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAnaerobic granular sludgeen_US
dc.subjectCO2 utilizationen_US
dc.subjectHomoacetogensen_US
dc.subjectMagnesium ribbonen_US
dc.subjectMethanogen inhibitionen_US
dc.subjectVolatile fatty acidsen_US
dc.titleCO2 conversion to volatile fatty acids by anaerobic granular sludge and Mg0en_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.bej.2022.108799en_US
dc.identifier.scopus2-s2.0-85145826596-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85145826596-
dc.relation.volume191en_US
cut.common.academicyear2022-2023en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0001-8316-4577-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

2
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Nov 1, 2023

Page view(s) 50

201
Last Week
0
Last month
8
checked on Feb 4, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons