Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29518
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Mellit, A. | - |
dc.contributor.author | Benghanem, Mohamed S. | - |
dc.contributor.author | Kalogirou, Soteris A. | - |
dc.contributor.author | Massi Pavan, Alessandro | - |
dc.date.accessioned | 2023-06-28T07:04:00Z | - |
dc.date.available | 2023-06-28T07:04:00Z | - |
dc.date.issued | 2023-05-01 | - |
dc.identifier.citation | Renewable Energy, 2023, vol. 208, pp. 399-408 | en_US |
dc.identifier.issn | 09601481 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/29518 | - |
dc.description.abstract | In this paper a novel embedded system for remote monitoring and fault diagnosis of photovoltaic systems is introduced. The idea is to embed machine leaning algorithms into a low-cost edge device for real-time deployment. First, an artificial neural network is developed to detect faults. Then an effective stacking ensemble learning algorithm is developed to classify the nature of the fault. The method performance is evaluated through common error metrics such as RMSE, MAE, MAPE, r and confusion matrix. Additional algorithms are also embedded into the edge device in order to remotely control the photovoltaic array parameters. Users can be notified by email and SMS about the state of their photovoltaic array. The Blynk IoT platform is used to monitor remotely the photovoltaic array parameters. The experimental results demonstrate the ability of the proposed embedded system to diagnose and monitor the photovoltaic array with a good accuracy. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Renewable Energy | en_US |
dc.rights | Copyright © Elsevier B.V. | en_US |
dc.subject | Photovoltaic array | en_US |
dc.subject | Fault diagnosis | en_US |
dc.subject | Monitoring system | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Embedded system | en_US |
dc.title | An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine learning and the internet of things | en_US |
dc.type | Article | en_US |
dc.collaboration | University of Jijel | en_US |
dc.collaboration | Islamic University of Madinah | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | University of Trieste | en_US |
dc.subject.category | Mechanical Engineering | en_US |
dc.journals | Hybrid Open Access | en_US |
dc.country | Cyprus | en_US |
dc.country | Algeria | en_US |
dc.country | Saudi Arabia | en_US |
dc.country | Italy | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/j.renene.2023.03.096 | en_US |
dc.identifier.scopus | 2-s2.0-85151264437 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85151264437 | - |
dc.relation.volume | 208 | en_US |
cut.common.academicyear | 2022-2023 | en_US |
dc.identifier.spage | 399 | en_US |
dc.identifier.epage | 408 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.author.dept | Department of Mechanical Engineering and Materials Science and Engineering | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4497-0602 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
50
5
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
1
checked on 1 Νοε 2023
Page view(s) 50
193
Last Week
1
1
Last month
33
33
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα