Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2935
Title: Fuzzy ART for Relatively Fast Unsupervised Image Color Quantization
Authors: Shorter, Nicholas S. 
Kasparis, Takis 
metadata.dc.contributor.other: Κασπαρής, Τάκης
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Keywords: Image Color Quantization;Fuzzy ART;Clustering;Unsupervised
Issue Date: Dec-2008
Source: SSPR /SPR 2008: Structural, Syntactic, and Statistical Pattern Recognition, pp. 147-156, Orlando, USA, December 4-6, 2008. Proceedings
Conference: Structural, Syntactic, and Statistical Pattern Recognition 
Abstract: The use of Fuzzy Adaptive Resonance Theory (FA) is explored for the unsupervised color quantization of a color image. The red, green and blue color component values of a given color image are passed as input instances into FA which then groups similar colors into the same class. The average of all of the colors in a given class then replaces the pixel values whose original colors belonged to that class. The FA unsupervised clustering is capable of realizing color quantization with competitive accuracy and arguably low computation time.
Description: Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)
ISBN: 9783540896883
ISSN: 0302-9743 (Print)
1611-3349 (Online)
DOI: 10.1007/978-3-540-89689-0_19
Rights: © Springer
Type: Conference Papers
Affiliation: University of Central Florida 
Affiliation : University of Central Florida 
Publication Type: Peer Reviewed
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Show full item record

Page view(s) 50

453
Last Week
2
Last month
3
checked on Jan 5, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons