Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/29346
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lanitis, Andreas | - |
dc.contributor.author | Sozou, Peter D. | - |
dc.contributor.author | Taylor, Chris J. | - |
dc.contributor.author | Cootes, Timothy F. | - |
dc.contributor.author | Di Mauro, E. C. | - |
dc.date.accessioned | 2023-06-16T13:10:17Z | - |
dc.date.available | 2023-06-16T13:10:17Z | - |
dc.date.issued | 1996-08-25 | - |
dc.identifier.citation | Proceedings of 13th International Conference on Pattern Recognition, 1996, pp. 266-270 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/29346 | - |
dc.description.abstract | Objects of the same class often exhibit variation in shape. This shape variation has previously been modelled by means of point distribution models (PDMs) in which there is a linear relationship between a set of shape parameters and the positions of points on the shape. Here we present a new form of PDM, which uses a multilayer perceptron (MLP) to carry out nonlinear principal component analysis. We demonstrate that MLP-PDMs can model the shape variability in classes of object for which the linear model fails. We describe the use of MLP-PDMs in image search and present quantitative results for a practical application (face recognition), demonstrating the ability to locate image structures accurately starting from a very poor initial approximation to their pose and shape. © 1996 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.rights | © Copyright IEEE | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Shape | en_US |
dc.subject | Principal component analysis | en_US |
dc.subject | Biomedical imaging | en_US |
dc.subject | Deformable models | en_US |
dc.subject | Multilayer perceptrons | en_US |
dc.subject | Tellurium | en_US |
dc.subject | Biophysics | en_US |
dc.subject | Educational institutions | en_US |
dc.subject | Ear | en_US |
dc.subject | Face recognition | en_US |
dc.title | A general non-linear method for modelling shape and locating image objects | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | University College London | en_US |
dc.collaboration | The University of Manchester | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.subject.category | SOCIAL SCIENCES | en_US |
dc.subject.category | Design | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.subject.field | Social Sciences | en_US |
dc.relation.conference | 13th International Conference on Pattern Recognition | en_US |
dc.identifier.doi | 10.1109/ICPR.1996.547428 | en_US |
dc.identifier.scopus | 2-s2.0-0001840218 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0001840218 | en |
cut.common.academicyear | 1996-1997 | en_US |
dc.identifier.external | 0001840218 | en |
dc.identifier.spage | 266 | en_US |
dc.identifier.epage | 270 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Multimedia and Graphic Arts | - |
crisitem.author.faculty | Faculty of Fine and Applied Arts | - |
crisitem.author.orcid | 0000-0001-6841-8065 | - |
crisitem.author.parentorg | Faculty of Fine and Applied Arts | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
10
5
checked on Mar 14, 2024
Page view(s) 10
155
Last Week
1
1
Last month
6
6
checked on Nov 23, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License