Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/28916
DC FieldValueLanguage
dc.contributor.authorAntoniou, Giannis N.-
dc.contributor.authorYuan, Peisen-
dc.contributor.authorKoutsokeras, Loukas E.-
dc.contributor.authorAthanasopoulos, Stavros-
dc.contributor.authorFazzi, Daniele-
dc.contributor.authorPanidi, Julianna-
dc.contributor.authorGeorgiadou, Dimitra G.-
dc.contributor.authorProdromakis, Themis-
dc.contributor.authorKeivanidis, Panagiotis E.-
dc.date.accessioned2023-03-30T09:58:10Z-
dc.date.available2023-03-30T09:58:10Z-
dc.date.issued2022-05-21-
dc.identifier.citationJournal of Materials Chemistry C, 2022, vol. 10, no. 19, pp. 7575-7585en_US
dc.identifier.issn20507534-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/28916-
dc.description.abstractThe integration of triplet-triplet annihilation (TTA) components as electrically and optically active elements in vertically-configured photoactive device architectures is a challenging task to achieve. Herein we present a simple methodology for incorporating a photon absorbing layer of the (2,3,7,8,12,13,17,18-octaethyl-porphyrinato)platinum(ii) (PtOEP) metallorganic complex, as a self-TTA annihilator medium in a sandwich-like photodiode device structure. At low power illumination, the PtOEP photodiode exhibits photocurrent generation via the fusion of optically induced PtOEP excited states and it develops an open-circuit voltage (VOC) as high as 1.15 V. The structural and spectroscopic characterization of the nanostructured PtOEP photoactive layer in combination with electronic structure calculations identify PtOEP dimer species as the annihilating excited state responsible for the formation of charges. The participation of the fusion process in the mechanism of charge photogeneration manifests in the supralinear dependence of the short-circuit current density (JSC) on the incoming photoexcitation intensity, both when incoherent and coherent light are used for illuminating the PtOEP diodes. The photoresponse of the PtOEP device allows for highly selective and sensitive photodetection within the 500-560 nm narrow spectral range. At short-circuit conditions a power-law is observed in the dependence of the device responsivity on fluence. The observed response of the PtOEP photodiodes reveals a hitherto neglected mechanism of photocurrent generation in single-component organic electronic devices that is facilitated by TTA reactions. These findings pave the way towards the fabrication of next-generation electro-optical switches, ultrasensitive organic photodetectors, and TTA-sensitized solar cells with vertically-configured device structure.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Materials Chemistry Cen_US
dc.rights© Royal Society of Chemistryen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectronic structureen_US
dc.subjectOpen circuit voltageen_US
dc.subjectOptical switchesen_US
dc.subjectOrganometallicsen_US
dc.subjectPhotocurrentsen_US
dc.subjectPhotodetectorsen_US
dc.subjectPhotodiodesen_US
dc.subjectPhotonsen_US
dc.subjectPlatinum compoundsen_US
dc.titleLow-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectorsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversidad Carlos III de Madriden_US
dc.collaborationUniversità di Bolognaen_US
dc.collaborationUniversity of Southamptonen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countrySpainen_US
dc.countryItalyen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1039/d2tc00662fen_US
dc.identifier.scopus2-s2.0-85130028453-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85130028453-
dc.relation.issue19en_US
dc.relation.volume10en_US
cut.common.academicyear2021-2022en_US
dc.identifier.spage7575en_US
dc.identifier.epage7585en_US
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.openairetypearticle-
crisitem.journal.journalissn2050-7534-
crisitem.journal.publisherRoyal Society of Chemistry-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4143-0085-
crisitem.author.orcid0000-0002-5336-249X-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

3
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

186
Last Week
0
Last month
3
checked on Jan 18, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons