Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/28660
DC FieldValueLanguage
dc.contributor.authorKafkalias, Andreas-
dc.contributor.authorHerodotou, Stylianos-
dc.contributor.authorTheodosiou, Zenonas-
dc.contributor.authorLanitis, Andreas-
dc.date.accessioned2023-03-20T20:37:37Z-
dc.date.available2023-03-20T20:37:37Z-
dc.date.issued2022-06-10-
dc.identifier.citation18th International Conference Artificial Intelligence Applications and Innovations, 2022, 17–20 June, Crete, Greeceen_US
dc.identifier.isbn978-3-031-08337-2-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/28660-
dc.description.abstractAn important factor that ensures the correct operation of Machine Learning models is the quality of data used during the model training process. Quite often, training data is annotated by humans, and as a result, annotation bias may be introduced. In this study, we focus on face image classification and aim to quantify the effect of annotation bias introduced by different groups of annotators, allowing in that way the understanding of the problems that arise due to annotation bias. The results of the experiments indicate that the performance of Machine Learning models in several face image interpretation tasks is correlated to the self-reported demographic characteristics of the annotators. In particular, we found significant correlation to annotator race, while correlation to gender is less profound. Furthermore, experimental results show that it is possible to determine the group of annotators involved in the annotation process by considering the annotation data provided by previously unseen annotators. The results emphasize the risks of annotation bias in Machine Learning models.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Springer Natureen_US
dc.subjectMachine learningen_US
dc.subjectAnnotation biasen_US
dc.subjectFace imagesen_US
dc.titleBias in Face Image Classification Machine Learning Models: The Impact of Annotator’s Gender and Raceen_US
dc.typeConference Papersen_US
dc.collaborationCYENS - Centre of Excellenceen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Artificial Intelligence Applications and Innovationsen_US
dc.identifier.doi10.1007/978-3-031-08337-2_8en_US
dc.identifier.scopus2-s2.0-85133249143-
dc.identifier.urlhttps://doi.org/10.1007/978-3-031-08337-2_8-
cut.common.academicyear2021-2022en_US
dc.identifier.external114547880-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Communication and Internet Studies-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0003-3168-2350-
crisitem.author.orcid0000-0001-6841-8065-
crisitem.author.parentorgFaculty of Communication and Media Studies-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s) 50

204
Last Week
2
Last month
4
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.