Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/27502
DC FieldValueLanguage
dc.contributor.authorXanthakis, Epameinondas-
dc.contributor.authorVan Ommen, J. Ruud-
dc.contributor.authorAhrne, Lilia-
dc.date.accessioned2023-01-30T12:03:41Z-
dc.date.available2023-01-30T12:03:41Z-
dc.date.issued2015-12-
dc.identifier.citationPowder Technology, 2015, vol. 286, pp. 156-163en_US
dc.identifier.issn1873328X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/27502-
dc.description.abstractThe applications of nanopowders are increasing significantly over the last years. In most of these applications, the flow behavior of the nanopowders seems to be a complicated, multiparametric but critical issue for the proper design of the processes. We have investigated, classified and compared several different metal oxide nanoparticles with respect to their flow properties. The flow properties of titania, silica and alumina hydrophilic nanopowders as well as their corresponding hydrophobic counterparts were determined by means of an annular shear cell powder flow tester (PFT). All the tested powders showed difficulties in flow while the titania nanopowders showed the highest difficulty among them. The results acquired regarding the compressibility, the flow functions and the effective angle of internal friction revealed that in all the cases the hydrophobic nanopowder seemed to be more cohesive than its hydrophilic counterpart. Moreover, the nanoparticles, no matter their polarity, showed negligible hygroscopicity while in the case of the alumina nanopowders the flow properties can be significantly influenced by ca. 1% (w/w) of moisture content.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPowder Technologyen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNanopowdersen_US
dc.subjectFlowabilityen_US
dc.subjectPowder flow testeren_US
dc.titleFlowability characterization of nanopowdersen_US
dc.typeArticleen_US
dc.collaborationSP Food and Bioscienceen_US
dc.collaborationDelft University of Technologyen_US
dc.subject.categoryChemical Sciencesen_US
dc.journalsSubscriptionen_US
dc.countrySwedenen_US
dc.countryNetherlandsen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.powtec.2015.08.015en_US
dc.identifier.scopus2-s2.0-84939832411-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84939832411-
dc.relation.issue156en_US
dc.relation.volume286en_US
cut.common.academicyear2015-2016en_US
dc.identifier.spage163en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1873-328X-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0003-1570-3254-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

19
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

17
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

142
Last Week
2
Last month
9
checked on May 12, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons