Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/27109
DC FieldValueLanguage
dc.contributor.authorMundt, Paul-
dc.contributor.authorKumara, Indika-
dc.contributor.authorVan Den Heuvel, Willem Jan-
dc.contributor.authorTamburri, Damian Andrew-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2022-12-22T06:53:16Z-
dc.date.available2022-12-22T06:53:16Z-
dc.date.issued2022-07-31-
dc.identifier.citation12th International Symposium on Business Modeling and Software Design, 2022, 27–29 June, Fribourg, Switzerlanden_US
dc.identifier.isbn978-3-031-11510-3-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/27109-
dc.description.abstractIn autonomous driving systems, the level of monitoring and control expected from the vehicle and the driver change in accordance with the level of automation, creating a dynamic risk environment where risks change according to the level of automation. Moreover, the input data and their essential features for a given risk model can also be inconsistent, heterogeneous, and volatile. Therefore, risk assessment systems must adapt to changes in the automation level and input data content to ensure that both the risk criteria and weighting reflect the actual system state, which can change at any time. This paper introduces KnowGo, a learning-based dynamic risk assessment framework that provides a risk prediction architecture that can be dynamically reconfigured in terms of risk criterion, risk model selection, and weighting in response to dynamic changes in the operational environment. We validated the KnowGo framework with five types of risk scoring models implemented using data-driven and rule-based methods.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Springer Natureen_US
dc.subjectDynamic risk assessmenten_US
dc.subjectAdaptive systemsen_US
dc.subjectAutonomous vehiclesen_US
dc.subjectMeta-learningen_US
dc.subjectMulti-modelen_US
dc.subjectDynamic software architectureen_US
dc.titleKnowGo: An Adaptive Learning-Based Multi-model Framework for Dynamic Automotive Risk Assessmenten_US
dc.typeConference Papersen_US
dc.collaborationAdaptant Solutionsen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationJheronimus Academy of Data Scienceen_US
dc.collaborationTilburg Universityen_US
dc.collaborationEindhoven University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryNetherlandsen_US
dc.countryCyprusen_US
dc.countryGermanyen_US
dc.countryNetherlandsen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Symposium on Business Modeling and Software Designen_US
dc.identifier.doi10.1007/978-3-031-11510-3_18en_US
dc.identifier.scopus2-s2.0-85135844149-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85135844149-
cut.common.academicyear2021-2022en_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

1
checked on Mar 14, 2024

Page view(s) 50

232
Last Week
2
Last month
1
checked on Jan 29, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.