Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/27107
DC FieldValueLanguage
dc.contributor.authorVoskou, Andreas-
dc.contributor.authorPanousis, Konstantinos P.-
dc.contributor.authorKosmopoulos, Dimitrios I.-
dc.contributor.authorMetaxas, Dimitris-
dc.contributor.authorChatzis, Sotirios P.-
dc.date.accessioned2022-12-21T11:18:53Z-
dc.date.available2022-12-21T11:18:53Z-
dc.date.issued2021-10-10-
dc.identifier.citationProceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 11946-11955en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/27107-
dc.description.abstractAutomating sign language translation (SLT) is a challenging real-world application. Despite its societal importance, though, research progress in the field remains rather poor. Crucially, existing methods that yield viable performance necessitate the availability of laborious to obtain gloss sequence groundtruth. In this paper, we attenuate this need, by introducing an end-to-end SLT model that does not entail explicit use of glosses; the model only needs text groundtruth. This is in stark contrast to existing end-to-end models that use gloss sequence groundtruth, either in the form of a modality that is recognized at an intermediate model stage, or in the form of a parallel output process, jointly trained with the SLT model. Our approach constitutes a Transformer network with a novel type of layers that combines: (i) local winner-takes-all (LWTA) layers with stochastic winner sampling, instead of conventional ReLU layers, (ii) stochastic weights with posterior distributions estimated via variational inference, and (iii) a weight compression technique at inference time that exploits estimated posterior variance to perform massive, almost lossless compression. We demonstrate that our approach can reach the currently best reported BLEU-4 score on the PHOENIX 2014T benchmark, but without making use of glosses for model training, and with a memory footprint reduced by more than 70%.en_US
dc.language.isoenen_US
dc.relationaRTIFICIAL iNTELLIGENCE for the Deaf (aiD)en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMemory managementen_US
dc.subjectStochastic processesen_US
dc.subjectGesture recognitionen_US
dc.subjectBenchmark testingen_US
dc.subjectAssistive technologiesen_US
dc.subjectMachine learning architectures and formulationsen_US
dc.subjectRepresentation learningen_US
dc.subjectVision + languageen_US
dc.titleStochastic Transformer Networks With Linear Competing Units: Application To End-to-End SL Translationen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Patrasen_US
dc.collaborationRutgers Universityen_US
dc.subject.categoryOther Engineering and Technologiesen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceIEEE/CVF International Conference on Computer Vision (ICCV)en_US
dc.identifier.doi10.1109/ICCV48922.2021.01173en_US
cut.common.academicyear2021-2022en_US
dc.identifier.spage11946en_US
dc.identifier.epage11955en_US
item.openairetypeconferenceObject-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.project.funderEC Joint Research Centre-
crisitem.project.fundingProgramH2020-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/872139-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
Files in This Item:
File Description SizeFormat
Stochastic Transformer Networks.pdf690.84 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

17
checked on Nov 6, 2023

Page view(s)

263
Last Week
1
Last month
7
checked on Dec 11, 2024

Download(s) 20

96
checked on Dec 11, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons