Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/26523
DC FieldValueLanguage
dc.contributor.authorYang, Yang-
dc.contributor.authorBashir, Musa B.-
dc.contributor.authorSakaris, Christos S.-
dc.contributor.authorLoughney, Sean-
dc.contributor.authorWang, Jin-
dc.contributor.authorMichailides, Constantine-
dc.contributor.authorLi, Chun-
dc.date.accessioned2022-03-31T09:43:50Z-
dc.date.available2022-03-31T09:43:50Z-
dc.date.issued2021-10-
dc.identifier.citation4th International Conference on Renewable Energies Offshore, 2021, 12-15 October, Lisbon, Portugalen_US
dc.identifier.isbn9781003134572-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/26523-
dc.description.abstractThis paper presents a study on the mitigation of dynamic responses of a spar-type multi-body platform of a Floating Offshore Wind Turbine (FOWT) under coupled wind-wave-current loadings. The multi-body floating platform was developed to support a 10 MW wind turbine under investigation. The mitigation is achieved by implementation of a structural control module based on Tuned Mass Damper (TMD). A fully-coupled tool based on AQWA and FAST is developed and used to perform numerical analysis of the FOWT. The time-varying tension of the tendons due to turbulent wind and irregular wave loadings are compared for the scenarios with and without TMD. The results indicate that tensions of the tendons are effectively reduced by the TMD. An average reduction of 11.8% on the Damage Equivalent Load (DEL) is achieved for the tendons. The alleviation on the tension fluctuation is beneficial in extending the service lifetime of the tendons.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Taylor & Francisen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOffshore oil well productionen_US
dc.subjectOffshore wind turbinesen_US
dc.subjectStructural dynamicsen_US
dc.subjectVibration controlen_US
dc.titleTuned mass damper effects on the tendon responses of a novel 10 MW multi-body floating offshore wind turbine platformen_US
dc.typeConference Papersen_US
dc.collaborationLiverpool John Moores Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Shanghai for Science and Technologyen_US
dc.subject.categoryCivil Engineeringen_US
dc.countryUnited Kingdomen_US
dc.countryCyprusen_US
dc.countryChinaen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Renewable Energies Offshoreen_US
dc.identifier.doi10.1201/9781003134572en_US
dc.identifier.scopus2-s2.0-85117384922-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85117384922-
cut.common.academicyear2020-2021en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-2016-9079-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

2
checked on Mar 14, 2024

Page view(s) 50

318
Last Week
0
Last month
33
checked on Mar 14, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons