Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2624
DC FieldValueLanguage
dc.contributor.authorTsapatsoulis, Nicolas-
dc.contributor.authorLeonidou, Miltiades-
dc.contributor.authorKollias, Stefanos D.-
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.date.accessioned2015-02-05T06:48:38Z-
dc.date.accessioned2015-12-02T11:51:40Z-
dc.date.available2015-02-05T06:48:38Z-
dc.date.available2015-12-02T11:51:40Z-
dc.date.issued1998-
dc.identifier.citationIEEE Second Workshop on Multimedia Signal Processing, 1998, pages 89 - 95en
dc.identifier.isbn0-7803-4919-9-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2624-
dc.description.abstractAn expression recognition technique is proposed based on the hidden Markov models (HMM) ability to deal with time sequential data and to provide time scale invariability as well as a learning capability. A feature vector sequence is used for this purpose, which relies on optical flow extraction, as well as directional filtering of the motion field. Segmentation and identification of important facial parts are preceding feature extraction. The HMM is enhanced with an observation dependent transition matrix, being able to cope with the dynamics of emotions and the severe complexity of expressions timing. Experimental results are included illustrating the effectiveness of this methoden
dc.language.isoenen
dc.rights© 1998, IEEEen
dc.subjectFace recognitionen
dc.subjectFeature extractionen
dc.subjectFiltering theoryen
dc.subjectHidden Markov modelsen
dc.titleFacial Expression Recognition Using HMM with Observation Dependent Transition Matrixen
dc.typeConference Papersen
dc.collaborationNational Technical University Of Athens-
dc.subject.categoryMedia and Communicationsen
dc.reviewPeer Revieweden
dc.countryGreece-
dc.subject.fieldSocial Sciencesen
dc.identifier.doi10.1109/MMSP.1998.738918en
dc.dept.handle123456789/54en
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 6, 2023

Page view(s)

535
Last Week
0
Last month
2
checked on Jan 5, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.